Dynamic Imine Bonds in Tire Tread Compounds: A Pathway to a Circular Economy and Reduced Waste

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pilar Bernal-Ortega, Rafal Anyszka, Raffaele di Ronza, Claudia Aurisicchio, Anke Blume
{"title":"Dynamic Imine Bonds in Tire Tread Compounds: A Pathway to a Circular Economy and Reduced Waste","authors":"Pilar Bernal-Ortega, Rafal Anyszka, Raffaele di Ronza, Claudia Aurisicchio, Anke Blume","doi":"10.1021/acssuschemeng.4c09344","DOIUrl":null,"url":null,"abstract":"The tire industry is in constant transformation toward the development of more sustainable products while maintaining high performance. Nowadays, one of the most used strategies is the implementation of the circular economy (CE) model, based on the reuse of products, recycling, and conservation of natural resources. One of the main goals of introducing the CE model is to reduce the amount of end of life tires (ELTs) that accumulate every year. For this, improvement in the recycling process of these products is of great importance. To face this challenge, this research aims to improve the recyclability of rubber by a novel approach to apply dynamic imine bonds for the silica–rubber coupling in tire tread compounds as an alternative to the state-of-the-art silica/silane covalent coupling. The formation of this new coupling using an imine bond was achieved by the reaction of an amine and different aromatic aldehydes. Rubber compounds with this new coupling system show a decrease in the wet grip indicator but improved mechanical performance, rolling resistance, superior fatigue behavior, and a high potential for recycling compared with the state-of-the-art compounds.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"74 2 Pt 2 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c09344","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tire industry is in constant transformation toward the development of more sustainable products while maintaining high performance. Nowadays, one of the most used strategies is the implementation of the circular economy (CE) model, based on the reuse of products, recycling, and conservation of natural resources. One of the main goals of introducing the CE model is to reduce the amount of end of life tires (ELTs) that accumulate every year. For this, improvement in the recycling process of these products is of great importance. To face this challenge, this research aims to improve the recyclability of rubber by a novel approach to apply dynamic imine bonds for the silica–rubber coupling in tire tread compounds as an alternative to the state-of-the-art silica/silane covalent coupling. The formation of this new coupling using an imine bond was achieved by the reaction of an amine and different aromatic aldehydes. Rubber compounds with this new coupling system show a decrease in the wet grip indicator but improved mechanical performance, rolling resistance, superior fatigue behavior, and a high potential for recycling compared with the state-of-the-art compounds.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信