Kenneth Chen , Christoph Stotter , Christopher Lepenik , Thomas Klestil , Christoph Salzlechner , Stefan Nehrer
{"title":"Frontal plane mechanical leg alignment estimation from knee x-rays using deep learning","authors":"Kenneth Chen , Christoph Stotter , Christopher Lepenik , Thomas Klestil , Christoph Salzlechner , Stefan Nehrer","doi":"10.1016/j.ocarto.2024.100551","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Lower limb malalignment can complicate symptoms and accelerate knee osteoarthritis (OA), necessitating consideration in study population selection. In this study, we develop and validate a deep learning model that classifies leg alignment as “normal” or “malaligned” from knee antero-posterior (AP)/postero-anterior (PA) radiographs alone, using an adjustable hip-knee-ankle (HKA) angle threshold.</div></div><div><h3>Material and methods</h3><div>We utilized 8878 digital radiographs, including 6181 AP/PA full-leg x-rays (LLRs) and 2697 AP/PA knee x-rays (2292 with positioning frame, 405 without). The model's evaluation involved two steps: In step 1, the model's predictions on knee images cropped from LLRs were compared against the ground truth from the original LLRs. In step 2, the model was tested on knee AP radiographs, using corresponding same-day LLRs as a proxy for ground truth.</div></div><div><h3>Results</h3><div>The model effectively classified alignment, with step one achieving sensitivity and specificity of 0.92 for a threshold of 7.5°, and 0.90 and 0.85 for 5°. For positioning frame images, step two showed a sensitivity of 0.85 and specificity of 0.81 for 7.5°, and 0.79 and 0.74 for 5°. For non-positioning frame images, sensitivity and specificity were 0.91 and 0.83 for 7.5°, and 0.9 and 0.86 for 5°.</div></div><div><h3>Conclusion</h3><div>The model developed in this study accurately classifies lower limb malalignment from AP/PA knee radiographs using adjustable thresholds, offering a practical alternative to LLRs. This can enhance the precision of study population selection and patient management.</div></div>","PeriodicalId":74377,"journal":{"name":"Osteoarthritis and cartilage open","volume":"7 1","pages":"Article 100551"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis and cartilage open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665913124001183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Lower limb malalignment can complicate symptoms and accelerate knee osteoarthritis (OA), necessitating consideration in study population selection. In this study, we develop and validate a deep learning model that classifies leg alignment as “normal” or “malaligned” from knee antero-posterior (AP)/postero-anterior (PA) radiographs alone, using an adjustable hip-knee-ankle (HKA) angle threshold.
Material and methods
We utilized 8878 digital radiographs, including 6181 AP/PA full-leg x-rays (LLRs) and 2697 AP/PA knee x-rays (2292 with positioning frame, 405 without). The model's evaluation involved two steps: In step 1, the model's predictions on knee images cropped from LLRs were compared against the ground truth from the original LLRs. In step 2, the model was tested on knee AP radiographs, using corresponding same-day LLRs as a proxy for ground truth.
Results
The model effectively classified alignment, with step one achieving sensitivity and specificity of 0.92 for a threshold of 7.5°, and 0.90 and 0.85 for 5°. For positioning frame images, step two showed a sensitivity of 0.85 and specificity of 0.81 for 7.5°, and 0.79 and 0.74 for 5°. For non-positioning frame images, sensitivity and specificity were 0.91 and 0.83 for 7.5°, and 0.9 and 0.86 for 5°.
Conclusion
The model developed in this study accurately classifies lower limb malalignment from AP/PA knee radiographs using adjustable thresholds, offering a practical alternative to LLRs. This can enhance the precision of study population selection and patient management.