Matthew M. Willmering , Brice J. Albert , Joseph W. Plummer , Josh Greer , Laura L. Walkup , Diana M. Lindquist , Zackary I. Cleveland
{"title":"A thermally polarized, dissolved-phase 129Xe phantom for quality-control and multisite comparisons of gas-exchange imaging","authors":"Matthew M. Willmering , Brice J. Albert , Joseph W. Plummer , Josh Greer , Laura L. Walkup , Diana M. Lindquist , Zackary I. Cleveland","doi":"10.1016/j.jmr.2025.107829","DOIUrl":null,"url":null,"abstract":"<div><div>Harmonizing and validating <sup>129</sup>Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of <sup>129</sup>Xe observed from human subjects <em>in vivo</em> and 2) has short enough <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the <em>in-vivo</em>, red blood cell and membrane resonances of <sup>129</sup>Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two <em>in-vivo</em>-like dissolved-phase <sup>129</sup>Xe phantoms yielding chemical shifts of 212.4 ppm and 193.9 ppm. By doping the solutions with iron(iii) acetylacetonate, the longitudinal relaxation time was reduced <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> = 1.2 s for both phantoms at 3 T and 7 T. There was minimal change in chemical shift (+1.58 ppm) and <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> (+1.2 %) over 1 year. In a 2D Dixon-type acquisition with 3 mm<sup>2</sup> in-plane resolution, <sup>129</sup>Xe dissolved-phase images yielded signal-to-noise ratios 6 and 12 for the RBC and membrane phantoms, respectively. A simple scaling of these phantoms to clinically relevant volumes of several liters would result in an SNR of 7 for the RBC phantom acquired in less than one minute. These findings demonstrate the ability to fabricate robust, quantitative, thermally polarized dissolved-phase phantoms, which will be needed to validate and harmonize gas exchange imaging in multi-site clinical trials.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"371 ","pages":"Article 107829"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Harmonizing and validating 129Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of 129Xe observed from human subjects in vivo and 2) has short enough times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of 129Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase 129Xe phantoms yielding chemical shifts of 212.4 ppm and 193.9 ppm. By doping the solutions with iron(iii) acetylacetonate, the longitudinal relaxation time was reduced = 1.2 s for both phantoms at 3 T and 7 T. There was minimal change in chemical shift (+1.58 ppm) and (+1.2 %) over 1 year. In a 2D Dixon-type acquisition with 3 mm2 in-plane resolution, 129Xe dissolved-phase images yielded signal-to-noise ratios 6 and 12 for the RBC and membrane phantoms, respectively. A simple scaling of these phantoms to clinically relevant volumes of several liters would result in an SNR of 7 for the RBC phantom acquired in less than one minute. These findings demonstrate the ability to fabricate robust, quantitative, thermally polarized dissolved-phase phantoms, which will be needed to validate and harmonize gas exchange imaging in multi-site clinical trials.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.