Use of pattern recognition in photoacoustic imaging to identify neuronal ensembles in the prefrontal cortex of rats undergoing conditioned fear learning
Shane A. Perrine , Mohammad Beirami , James I. Matchynski , Rayyan Manwar , Srinivasu Kallakuri , Alana C. Conti , Kamran Avanaki
{"title":"Use of pattern recognition in photoacoustic imaging to identify neuronal ensembles in the prefrontal cortex of rats undergoing conditioned fear learning","authors":"Shane A. Perrine , Mohammad Beirami , James I. Matchynski , Rayyan Manwar , Srinivasu Kallakuri , Alana C. Conti , Kamran Avanaki","doi":"10.1016/j.pacs.2024.100680","DOIUrl":null,"url":null,"abstract":"<div><div>Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e. sham conditioning) equally increase Fos-dependent neuronal ensemble signal intensity in the prefrontal cortex (PFC) of rats as quantified by photoacoustic imaging (e.g. functional/molecular photoacoustic tomography). Here we use similarity metrics-based pattern recognition analysis to determine if neuronal ensemble activation patterns in the PFC are unique fear-conditioned compared to sham-conditioned rats. Our results show that a qualitatively-unique pattern in signal intensity exists only for the fear-conditioned group compared to sham-conditioned, behaviourally-naïve, or fear-conditioned vehicle control groups. These findings suggest that while the PFC is involved equally in novelty-exposure and fear learning, only highly coordinated behavioral tasks engage the PFC in a homogenous pattern of activity. This study also highlights the use of pattern recognition analysis using photoacoustic imaging data leading the way for future use of this computational approach to brain imaging.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100680"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000971","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e. sham conditioning) equally increase Fos-dependent neuronal ensemble signal intensity in the prefrontal cortex (PFC) of rats as quantified by photoacoustic imaging (e.g. functional/molecular photoacoustic tomography). Here we use similarity metrics-based pattern recognition analysis to determine if neuronal ensemble activation patterns in the PFC are unique fear-conditioned compared to sham-conditioned rats. Our results show that a qualitatively-unique pattern in signal intensity exists only for the fear-conditioned group compared to sham-conditioned, behaviourally-naïve, or fear-conditioned vehicle control groups. These findings suggest that while the PFC is involved equally in novelty-exposure and fear learning, only highly coordinated behavioral tasks engage the PFC in a homogenous pattern of activity. This study also highlights the use of pattern recognition analysis using photoacoustic imaging data leading the way for future use of this computational approach to brain imaging.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.