Sarah F. Shaykevich , Justin P. Little , Yong Qian , Marie-Eve Paquet , Robert E. Campbell , Daniel Razansky , Shy Shoham
{"title":"Multimodal fluorescence-optoacoustic in vivo imaging of the near-infrared calcium ion indicator NIR-GECO2G","authors":"Sarah F. Shaykevich , Justin P. Little , Yong Qian , Marie-Eve Paquet , Robert E. Campbell , Daniel Razansky , Shy Shoham","doi":"10.1016/j.pacs.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><div>Measuring whole-brain distributed functional activity is an important unmet need in neuroscience, requiring high temporal resolution and cellular specificity across large volumes. Functional optoacoustic neuro-tomography (FONT) with genetically encoded calcium ion indicators is a promising approach towards this goal. However, it has not yet been applied in the near-infrared (NIR) range that provides deep penetration and low vascular background optimal for <em>in vivo</em> neuroimaging. Here, we study the noninvasive multimodal fluorescence and optoacoustic imaging performance of state-of-the-art NIR calcium ion indicator NIR-GECO2G in the mouse brain. We observe robust <em>in vivo</em> signals with widefield fluorescence, and for the first time, with FONT. We also show that in both modalities, the NIR-GECO2G signal improves more than twofold in the biliverdin-enriched <em>Blvra</em><sup><em>-/-</em></sup> mouse line compared to wild type. Our findings demonstrate the potential of multimodal fluorescence and optoacoustic NIR imaging, opening new possibilities for whole-brain real-time functional imaging in rodents.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100671"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000880","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring whole-brain distributed functional activity is an important unmet need in neuroscience, requiring high temporal resolution and cellular specificity across large volumes. Functional optoacoustic neuro-tomography (FONT) with genetically encoded calcium ion indicators is a promising approach towards this goal. However, it has not yet been applied in the near-infrared (NIR) range that provides deep penetration and low vascular background optimal for in vivo neuroimaging. Here, we study the noninvasive multimodal fluorescence and optoacoustic imaging performance of state-of-the-art NIR calcium ion indicator NIR-GECO2G in the mouse brain. We observe robust in vivo signals with widefield fluorescence, and for the first time, with FONT. We also show that in both modalities, the NIR-GECO2G signal improves more than twofold in the biliverdin-enriched Blvra-/- mouse line compared to wild type. Our findings demonstrate the potential of multimodal fluorescence and optoacoustic NIR imaging, opening new possibilities for whole-brain real-time functional imaging in rodents.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.