An Efficient Acute Lymphoblastic Leukemia Screen Framework Based on Multi-Modal Deep Neural Network.

Qiuming Wang, Tao Huang, Xiaojuan Luo, Xiaoling Luo, Xuechen Li, Ke Cao, Defa Li, Linlin Shen
{"title":"An Efficient Acute Lymphoblastic Leukemia Screen Framework Based on Multi-Modal Deep Neural Network.","authors":"Qiuming Wang, Tao Huang, Xiaojuan Luo, Xiaoling Luo, Xuechen Li, Ke Cao, Defa Li, Linlin Shen","doi":"10.1111/ijlh.14424","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute lymphoblastic leukemia (ALL) is a leading cause of death among pediatric malignancies. Early diagnosis of ALL is crucial for minimizing misdiagnosis, improving survival rates, and ensuring the implementation of precise treatment plans for patients.</p><p><strong>Methods: </strong>In this study, we propose a multi-modal deep neural network-based framework for early and efficient screening of ALL. Both white blood cell (WBC) scattergrams and complete blood count (CBC) are employed for ALL detection. The dataset comprises medical data from 233 patients with ALL, 283 patients with infectious mononucleosis (IM), and 183 healthy controls (HCs).</p><p><strong>Results: </strong>The combination of CBC data with WBC scattergrams achieved an accuracy of 98.43% in fivefold cross-validation and a sensitivity of 96.67% in external validation, demonstrating the efficacy of our method. Additionally, the area under the curve (AUC) of this model surpasses 0.99, outperforming well-trained medical technicians.</p><p><strong>Conclusions: </strong>To the best of our knowledge, this framework is the first to incorporate WBC scattergrams with CBC data for ALL screening, proving to be an efficient method with enhanced sensitivity and specificity. Integrating this framework into the screening procedure shows promise for improving the early diagnosis of ALL and reducing the burden on medical technicians. The code and dataset are available at https://github.com/cvi-szu/ALL-Screening.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute lymphoblastic leukemia (ALL) is a leading cause of death among pediatric malignancies. Early diagnosis of ALL is crucial for minimizing misdiagnosis, improving survival rates, and ensuring the implementation of precise treatment plans for patients.

Methods: In this study, we propose a multi-modal deep neural network-based framework for early and efficient screening of ALL. Both white blood cell (WBC) scattergrams and complete blood count (CBC) are employed for ALL detection. The dataset comprises medical data from 233 patients with ALL, 283 patients with infectious mononucleosis (IM), and 183 healthy controls (HCs).

Results: The combination of CBC data with WBC scattergrams achieved an accuracy of 98.43% in fivefold cross-validation and a sensitivity of 96.67% in external validation, demonstrating the efficacy of our method. Additionally, the area under the curve (AUC) of this model surpasses 0.99, outperforming well-trained medical technicians.

Conclusions: To the best of our knowledge, this framework is the first to incorporate WBC scattergrams with CBC data for ALL screening, proving to be an efficient method with enhanced sensitivity and specificity. Integrating this framework into the screening procedure shows promise for improving the early diagnosis of ALL and reducing the burden on medical technicians. The code and dataset are available at https://github.com/cvi-szu/ALL-Screening.

基于多模态深度神经网络的急性淋巴细胞白血病高效筛查框架。
背景:急性淋巴细胞白血病(ALL)是儿童恶性肿瘤死亡的主要原因。ALL的早期诊断对于最大限度地减少误诊、提高生存率和确保患者实施精确的治疗计划至关重要。方法:在本研究中,我们提出了一个基于多模态深度神经网络的框架,用于ALL的早期有效筛查。白细胞(WBC)散点图和全血细胞计数(CBC)用于ALL检测。该数据集包括233例ALL患者、283例传染性单核细胞增多症(IM)患者和183例健康对照(hc)患者的医疗数据。结果:CBC数据与WBC散点图相结合,五重交叉验证的准确率为98.43%,外部验证的灵敏度为96.67%,验证了方法的有效性。此外,该模型的曲线下面积(AUC)超过0.99,优于训练有素的医疗技术人员。结论:据我们所知,该框架是第一个将白细胞散点图与CBC数据合并用于ALL筛查的框架,证明是一种有效的方法,具有增强的敏感性和特异性。将这一框架纳入筛查程序有望改善ALL的早期诊断并减轻医疗技术人员的负担。代码和数据集可从https://github.com/cvi-szu/ALL-Screening获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信