Photoperiodic plasticity of pigment-dispersing factor immunoreactive fibers projecting toward prothoracicotropic hormone neurons in flesh fly Sarcophaga similis larvae.

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Yutaro Ohe, Masaharu Hasebe, Yoshitaka Hamanaka, Shin G Goto, Sakiko Shiga
{"title":"Photoperiodic plasticity of pigment-dispersing factor immunoreactive fibers projecting toward prothoracicotropic hormone neurons in flesh fly Sarcophaga similis larvae.","authors":"Yutaro Ohe, Masaharu Hasebe, Yoshitaka Hamanaka, Shin G Goto, Sakiko Shiga","doi":"10.1007/s00359-024-01729-y","DOIUrl":null,"url":null,"abstract":"<p><p>Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information. To explore the mechanisms, we examined the neural circuitry involving circadian clock lateral neurons (LNs) and prothoracicotropic hormone (PTTH) neurons. We also examined the photoperiodic effects on LN-fiber patterns in third-instar S. similis larvae. Immunohistochemistry showed that the clock protein PERIOD and the neuropeptide pigment-dispersing factor (PDF) were co-localized in four cells per brain hemisphere, and we named these PDF-LNs of S. similis. Single-cell polymerase chain reaction of backfilled neurons from the ring gland showed that two pairs of pars lateralis neurons with contralateral axons (PL-c neurons) to the ring gland expressed ptth. Double labeling with immunohistochemistry and backfills revealed that PDF-immunoreactive varicose fibers projected close to fibers from PL-c neurons. short neuropeptide f (snpf) receptor and glutamate-gated chloride channel but not pdf receptor were expressed in PL-c neurons. sNPF and L-glutamate but not PDF acutely inhibited the spontaneous firing activity of PL-c neurons. The number of PDF-immunoreactive varicosities of PDF-LNs in the dorsal protocerebrum was significantly higher under short-day than that under long-day conditions in a time-dependent manner. These results suggest that sNPF and/or glutamate signaling to PTTH neurons and PDF-LNs form a potential neural circuity for the photoperiodic control of pupal diapause and that photoperiod modifies the connectivity strength between PDF-LNs and their post- or pre-neurons in the circuitry.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-024-01729-y","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information. To explore the mechanisms, we examined the neural circuitry involving circadian clock lateral neurons (LNs) and prothoracicotropic hormone (PTTH) neurons. We also examined the photoperiodic effects on LN-fiber patterns in third-instar S. similis larvae. Immunohistochemistry showed that the clock protein PERIOD and the neuropeptide pigment-dispersing factor (PDF) were co-localized in four cells per brain hemisphere, and we named these PDF-LNs of S. similis. Single-cell polymerase chain reaction of backfilled neurons from the ring gland showed that two pairs of pars lateralis neurons with contralateral axons (PL-c neurons) to the ring gland expressed ptth. Double labeling with immunohistochemistry and backfills revealed that PDF-immunoreactive varicose fibers projected close to fibers from PL-c neurons. short neuropeptide f (snpf) receptor and glutamate-gated chloride channel but not pdf receptor were expressed in PL-c neurons. sNPF and L-glutamate but not PDF acutely inhibited the spontaneous firing activity of PL-c neurons. The number of PDF-immunoreactive varicosities of PDF-LNs in the dorsal protocerebrum was significantly higher under short-day than that under long-day conditions in a time-dependent manner. These results suggest that sNPF and/or glutamate signaling to PTTH neurons and PDF-LNs form a potential neural circuity for the photoperiodic control of pupal diapause and that photoperiod modifies the connectivity strength between PDF-LNs and their post- or pre-neurons in the circuitry.

肉蝇幼虫向前致胸激素神经元投射的色素分散因子免疫反应纤维的光周期可塑性。
肉蝇(Sarcophaga similis)的幼虫表现出光周期反应来控制蛹滞育。虽然外部符合模型适用于相似斑草的光周期,但生物钟系统如何整合日长信息仍不清楚。为了探索其机制,我们研究了涉及昼夜节律时钟侧侧神经元(LNs)和促胸前激素(PTTH)神经元的神经回路。我们还研究了光周期对三龄相似s幼虫ln -纤维模式的影响。免疫组化显示时钟蛋白PERIOD和神经肽色素分散因子(neuropeptide pigment-dispersing factor, PDF)共定位于每个脑半球的4个细胞中,我们将这些细胞命名为相似s的PDF- lns。单细胞聚合酶链反应显示,两对与环腺有对侧轴突的侧部神经元(PL-c神经元)表达pth。免疫组织化学和回填的双重标记显示,pdf免疫反应性静脉曲张纤维投射到PL-c神经元的纤维附近。PL-c神经元表达短神经肽f (snpf)受体和谷氨酸门控氯通道,但不表达pdf受体。sNPF和l -谷氨酸对PL-c神经元自发放电活性有明显抑制作用,而PDF无明显抑制作用。在短日照条件下,大鼠大脑背侧PDF-LNs的免疫反应性静脉曲张数明显高于长日照条件下,且呈时间依赖性。这些结果表明,sNPF和/或谷氨酸信号传递给PTTH神经元和PDF-LNs形成了一个潜在的神经回路,用于光周期控制蛹滞育,并且光周期改变了PDF-LNs与其后或前神经元之间的连接强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信