ZBP1-driven cell death in severe influenza.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
David F Boyd, Summer Vaughn Jordan, Siddharth Balachandran
{"title":"ZBP1-driven cell death in severe influenza.","authors":"David F Boyd, Summer Vaughn Jordan, Siddharth Balachandran","doi":"10.1016/j.tim.2024.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity. Recent studies have begun to define the molecular mechanisms by which IAV triggers lytic cell death. Z-form nucleic-acid-binding protein 1 (ZBP1) senses replicating IAV and drives programmed cell death (PCD) in infected cells, including apoptosis and necroptosis in AECs and pyroptosis in myeloid cells. Necroptosis and pyroptosis, both lytic forms of death, contribute to pathogenesis during severe infections. Pharmacological blockade of necroptosis shows strong therapeutic potential in mouse models of lethal influenza. We suggest that targeting ZBP1-initiated necroinflammatory cell lysis, either alone or in combination antiviral drugs, will provide clinical benefit in severe influenza.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.12.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity. Recent studies have begun to define the molecular mechanisms by which IAV triggers lytic cell death. Z-form nucleic-acid-binding protein 1 (ZBP1) senses replicating IAV and drives programmed cell death (PCD) in infected cells, including apoptosis and necroptosis in AECs and pyroptosis in myeloid cells. Necroptosis and pyroptosis, both lytic forms of death, contribute to pathogenesis during severe infections. Pharmacological blockade of necroptosis shows strong therapeutic potential in mouse models of lethal influenza. We suggest that targeting ZBP1-initiated necroinflammatory cell lysis, either alone or in combination antiviral drugs, will provide clinical benefit in severe influenza.

严重流感中 ZBP1 驱动的细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信