Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tobias Weber, Jakob Dexl, David Rügamer, Michael Ingrisch
{"title":"Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.","authors":"Tobias Weber, Jakob Dexl, David Rügamer, Michael Ingrisch","doi":"10.1148/ryai.240353","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TotalSegmentator dataset containing 1228 segmented CTs and a test subset of 89 CTs, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation accuracy, evaluated using the Dice score. Results The application of Tucker decomposition to the TotalSegmentator model substantially reduced the model parameters and FLOPs across various compression ratios, with limited loss in segmentation accuracy. Up to 88% of the model's parameters were removed, with no evidence of differences in performance compared with the original model for 113 of 117 classes after fine-tuning. Practical benefits varied across different graphics processing unit architectures, with more distinct speed-ups on less powerful hardware. Conclusion The study demonstrates that posthoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially impacting model accuracy. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240353"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TotalSegmentator dataset containing 1228 segmented CTs and a test subset of 89 CTs, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation accuracy, evaluated using the Dice score. Results The application of Tucker decomposition to the TotalSegmentator model substantially reduced the model parameters and FLOPs across various compression ratios, with limited loss in segmentation accuracy. Up to 88% of the model's parameters were removed, with no evidence of differences in performance compared with the original model for 113 of 117 classes after fine-tuning. Practical benefits varied across different graphics processing unit architectures, with more distinct speed-ups on less powerful hardware. Conclusion The study demonstrates that posthoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially impacting model accuracy. ©RSNA, 2025.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信