Exploring the potential of solid and liquid amniotic membrane biomaterial in 3D models for prostate cancer research: A comparative analysis with 2D models
{"title":"Exploring the potential of solid and liquid amniotic membrane biomaterial in 3D models for prostate cancer research: A comparative analysis with 2D models","authors":"Keykavos Gholami , Mehrnaz Izadi , Ramin Heshmat , Seyed Mohammad Kazem Aghamir","doi":"10.1016/j.tice.2025.102726","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms.</div></div><div><h3>Methods</h3><div>In this study, decellularized human amniotic membranes (DAM) and AM hydrogel were obtained and characterized. The solid DAM scaffold was employed to analyse cell proliferation, cell cycle, migration, apoptosis, and the content of epithelial-mesenchymal transition (EMT) proteins in prostate cancer cells in comparison to traditional 2D culture conditions under androgen deprivation treatment. Additionally, the liquid form of AM was assessed for its potential for 3D cultures of prostate cancer cells such as cells embedded in ECM, spheroid encapsulation, and invasion, with a parallel comparison to collagen.</div></div><div><h3>Results</h3><div>The 3D DAM scaffold significantly impacted cancer cell migration, morphology, proliferation, and EMT protein expression compared to 2D models. AM hydrogel effectively preserved the structural integrity of spheroids and led to lower proliferated cells embedded in AM hydrogel compared to 2D culture. AM hydrogel, like collagen, has the potential to be utilized for simulating in vitro cellular invasion from the ECM.</div></div><div><h3>Conclusion</h3><div>In summary, the potential of the biomaterial of DAM and AM hydrogel in creating 3D culture models, combined with the brief duration required for decellularizing the AM, suggests that these materials offer an ideal tool for in vitro prostate cancer research.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"Article 102726"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000060","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms.
Methods
In this study, decellularized human amniotic membranes (DAM) and AM hydrogel were obtained and characterized. The solid DAM scaffold was employed to analyse cell proliferation, cell cycle, migration, apoptosis, and the content of epithelial-mesenchymal transition (EMT) proteins in prostate cancer cells in comparison to traditional 2D culture conditions under androgen deprivation treatment. Additionally, the liquid form of AM was assessed for its potential for 3D cultures of prostate cancer cells such as cells embedded in ECM, spheroid encapsulation, and invasion, with a parallel comparison to collagen.
Results
The 3D DAM scaffold significantly impacted cancer cell migration, morphology, proliferation, and EMT protein expression compared to 2D models. AM hydrogel effectively preserved the structural integrity of spheroids and led to lower proliferated cells embedded in AM hydrogel compared to 2D culture. AM hydrogel, like collagen, has the potential to be utilized for simulating in vitro cellular invasion from the ECM.
Conclusion
In summary, the potential of the biomaterial of DAM and AM hydrogel in creating 3D culture models, combined with the brief duration required for decellularizing the AM, suggests that these materials offer an ideal tool for in vitro prostate cancer research.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.