Operative Time Learning Curve for an Image-Free Robotic Arm Assisted Total Knee Arthroplasty: A Cumulative Sum Analysis.

IF 1.5 Q3 ORTHOPEDICS
Arthroplasty Today Pub Date : 2024-12-23 eCollection Date: 2025-02-01 DOI:10.1016/j.artd.2024.101588
Cale A Pagan, Theofilos Karasavvidis, Breana Siljander, Eytan M Debbi, Charles A DeCook, Jonathan Vigdorchik
{"title":"Operative Time Learning Curve for an Image-Free Robotic Arm Assisted Total Knee Arthroplasty: A Cumulative Sum Analysis.","authors":"Cale A Pagan, Theofilos Karasavvidis, Breana Siljander, Eytan M Debbi, Charles A DeCook, Jonathan Vigdorchik","doi":"10.1016/j.artd.2024.101588","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Robotic arm assisted total knee arthroplasty (RA-TKA) aims to improve accuracy in bone resection, implant positioning, and joint alignment compared to manual TKA (M-TKA). However, the learning curve of RA-TKA can disrupt operating room efficiency, increase complications, and raise costs. This study examines the operative time learning curve of RA-TKA using a single robotic system.</p><p><strong>Methods: </strong>The study analyzed the first 80 RA-TKA and the last 80 M-TKA cases performed by a single surgeon using the VELYS robotic system after transitioning from M-TKA. Cases were subdivided into groups of 20 and compared to M-TKA cases. A cumulative summation analysis identified the learning curve phases.</p><p><strong>Results: </strong>Three phases were identified: Phase 1 (initial learning, cases 1-9), Phase 2 (increased competence, plateau from cases 10-52), and Phase 3 (post-learning, optimized performance from cases 53-80). Mean surgical time for RA-TKA was 42.4 ± 8.7 minutes, compared to 35.3 ± 7.0 minutes for M-TKA (<i>P</i> < .001). Early RA-TKA cases (1-20) had significantly longer times than late RA-TKA cases (61-80) and M-TKA cases (<i>P</i> < .05). Late RA-TKA times were comparable to M-TKA (<i>P</i> = .06).</p><p><strong>Conclusions: </strong>RA-TKA is an enabling surgical tool that can be integrated efficiently into a surgical workflow with a rapid learning curve of 9 cases.</p>","PeriodicalId":37940,"journal":{"name":"Arthroplasty Today","volume":"31 ","pages":"101588"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroplasty Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.artd.2024.101588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Robotic arm assisted total knee arthroplasty (RA-TKA) aims to improve accuracy in bone resection, implant positioning, and joint alignment compared to manual TKA (M-TKA). However, the learning curve of RA-TKA can disrupt operating room efficiency, increase complications, and raise costs. This study examines the operative time learning curve of RA-TKA using a single robotic system.

Methods: The study analyzed the first 80 RA-TKA and the last 80 M-TKA cases performed by a single surgeon using the VELYS robotic system after transitioning from M-TKA. Cases were subdivided into groups of 20 and compared to M-TKA cases. A cumulative summation analysis identified the learning curve phases.

Results: Three phases were identified: Phase 1 (initial learning, cases 1-9), Phase 2 (increased competence, plateau from cases 10-52), and Phase 3 (post-learning, optimized performance from cases 53-80). Mean surgical time for RA-TKA was 42.4 ± 8.7 minutes, compared to 35.3 ± 7.0 minutes for M-TKA (P < .001). Early RA-TKA cases (1-20) had significantly longer times than late RA-TKA cases (61-80) and M-TKA cases (P < .05). Late RA-TKA times were comparable to M-TKA (P = .06).

Conclusions: RA-TKA is an enabling surgical tool that can be integrated efficiently into a surgical workflow with a rapid learning curve of 9 cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Arthroplasty Today
Arthroplasty Today Medicine-Surgery
CiteScore
2.90
自引率
0.00%
发文量
258
审稿时长
40 weeks
期刊介绍: Arthroplasty Today is a companion journal to the Journal of Arthroplasty. The journal Arthroplasty Today brings together the clinical and scientific foundations for joint replacement of the hip and knee in an open-access, online format. Arthroplasty Today solicits manuscripts of the highest quality from all areas of scientific endeavor that relate to joint replacement or the treatment of its complications, including those dealing with patient outcomes, economic and policy issues, prosthetic design, biomechanics, biomaterials, and biologic response to arthroplasty. The journal focuses on case reports. It is the purpose of Arthroplasty Today to present material to practicing orthopaedic surgeons that will keep them abreast of developments in the field, prove useful in the care of patients, and aid in understanding the scientific foundation of this subspecialty area of joint replacement. The international members of the Editorial Board provide a worldwide perspective for the journal''s area of interest. Their participation ensures that each issue of Arthroplasty Today provides the reader with timely, peer-reviewed articles of the highest quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信