Overexpression of the Vitis amurensis Ca2+-binding protein gene VamCP1 in Arabidopsis thaliana and grapevine improves cold tolerance.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Fang Ding, Yang Pan, Jiahui Ma, Shijin Yang, Xinyi Hao, Weirong Xu, Xiuming Zhang
{"title":"Overexpression of the Vitis amurensis Ca<sup>2+</sup>-binding protein gene VamCP1 in Arabidopsis thaliana and grapevine improves cold tolerance.","authors":"Fang Ding, Yang Pan, Jiahui Ma, Shijin Yang, Xinyi Hao, Weirong Xu, Xiuming Zhang","doi":"10.1111/ppl.70053","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium ions (Ca<sup>2+</sup>) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca<sup>2+</sup>-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset. VamCP1 was found to localize to the plasma membrane and nucleus and the gene showed transcriptional autoactivation activity. Overexpression of VamCP1 in Arabidopsis thaliana and grapevine (V. vinifera) resulted in transgenic plants that were more tolerant to cold stress than the wild type. This correlated with reduced accumulation of reactive oxygen species (ROS), elevated activity of antioxidant enzymes and proline content, as well as lower levels of malondialdehyde and electrolyte leakage. Additionally, the expression of genes related to cold tolerance, including C-repeat binding factors (CBF) and cold-regulated (COR) genes, was higher in the transgenic lines. Taken together, our results indicate that overexpression of VamCP1 enhanced cold tolerance in plants by promoting the upregulation of genes related to cold tolerance and scavenging of excessive ROS. These findings provide a foundation for the molecular breeding of cold-tolerant grapevine.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70053"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70053","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium ions (Ca2+) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca2+-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset. VamCP1 was found to localize to the plasma membrane and nucleus and the gene showed transcriptional autoactivation activity. Overexpression of VamCP1 in Arabidopsis thaliana and grapevine (V. vinifera) resulted in transgenic plants that were more tolerant to cold stress than the wild type. This correlated with reduced accumulation of reactive oxygen species (ROS), elevated activity of antioxidant enzymes and proline content, as well as lower levels of malondialdehyde and electrolyte leakage. Additionally, the expression of genes related to cold tolerance, including C-repeat binding factors (CBF) and cold-regulated (COR) genes, was higher in the transgenic lines. Taken together, our results indicate that overexpression of VamCP1 enhanced cold tolerance in plants by promoting the upregulation of genes related to cold tolerance and scavenging of excessive ROS. These findings provide a foundation for the molecular breeding of cold-tolerant grapevine.

在拟南芥和葡萄中过表达葡萄Ca2+结合蛋白基因VamCP1可提高耐寒性。
钙离子(Ca2+)是重要的第二信使,参与冷信号转导。在目前的研究中,我们从极耐寒葡萄品种Vitis amurensis中鉴定了一个Ca2+结合蛋白基因VamCP1。VamCP1在各器官中表达不同,但在冷处理后叶片中表达最高,在处理开始后24 h达到峰值。VamCP1定位于质膜和细胞核,具有转录自激活活性。VamCP1在拟南芥和葡萄(V. vinifera)中的过表达导致转基因植株比野生型更耐冷胁迫。这与活性氧(ROS)积累减少、抗氧化酶活性和脯氨酸含量升高、丙二醛水平降低和电解质泄漏有关。此外,与耐冷性相关的基因,包括c -重复结合因子(CBF)和冷调节基因(COR)在转基因品系中表达量更高。综上所述,我们的研究结果表明,VamCP1的过表达通过促进与耐寒性和清除过量ROS相关基因的上调来增强植物的耐寒性。这些研究结果为耐冷葡萄的分子育种奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信