GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gaofeng Zhang , Weichao Li , Tong Han , Tianyi Huang , Lirong Sun , Fushun Hao
{"title":"GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum","authors":"Gaofeng Zhang ,&nbsp;Weichao Li ,&nbsp;Tong Han ,&nbsp;Tianyi Huang ,&nbsp;Lirong Sun ,&nbsp;Fushun Hao","doi":"10.1016/j.plantsci.2025.112392","DOIUrl":null,"url":null,"abstract":"<div><div>Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that <em>GhWRKY207</em> expression was high in leaves and induced by drought stress. The gene encoded a nuclear protein that had transcriptional activation activity. Silencing <em>GhWRKY207</em> by virus-induced gene silencing (VIGS) caused significant reduction in drought tolerance of cotton plants. Consistently, overexpression of <em>GhWRKY207</em> in <em>Arabidopsis thaliana</em> wild type (WT) plants clearly enhanced their drought tolerance. Moreover, <em>GhWRKY207</em> VIGS plants had notably increased malondialdehyde (MDA) contents, electrolyte leakage percentages and O<sub>2</sub><sup><strong>·−</strong></sup> accumulation rates whereas <em>GhWRKY207</em> overexpression lines showed markedly decreased levels of the three parameters compared to their corresponding controls under water deficit conditions. Additionally, GhWRKY207 enhanced superoxide dismutase (SOD) activity by directly activating the expression of <em>GhCu/Zn-SOD3</em> (<em>GhCSD3</em>) and <em>GhFe-SOD2</em> (<em>GhFSD2</em>) genes. Silencing <em>GhCSD3</em> or <em>GhFSD2</em> also markedly reduced drought tolerance of cotton plants. Taken together, these results suggest that GhWRKY207 positively regulates drought tolerance by inducing the expression of <em>GhCSD3</em> and <em>GhFSD2</em> in <em>Gossypium hirsutum</em>.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112392"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000093","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress. The gene encoded a nuclear protein that had transcriptional activation activity. Silencing GhWRKY207 by virus-induced gene silencing (VIGS) caused significant reduction in drought tolerance of cotton plants. Consistently, overexpression of GhWRKY207 in Arabidopsis thaliana wild type (WT) plants clearly enhanced their drought tolerance. Moreover, GhWRKY207 VIGS plants had notably increased malondialdehyde (MDA) contents, electrolyte leakage percentages and O2·− accumulation rates whereas GhWRKY207 overexpression lines showed markedly decreased levels of the three parameters compared to their corresponding controls under water deficit conditions. Additionally, GhWRKY207 enhanced superoxide dismutase (SOD) activity by directly activating the expression of GhCu/Zn-SOD3 (GhCSD3) and GhFe-SOD2 (GhFSD2) genes. Silencing GhCSD3 or GhFSD2 also markedly reduced drought tolerance of cotton plants. Taken together, these results suggest that GhWRKY207 positively regulates drought tolerance by inducing the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.
GhWRKY207通过促进棉花中GhCSD3和GhFSD2的表达来提高抗旱性。
色氨酸-精氨酸-赖氨酸-酪氨酸(WRKY)转录因子是多种植物抗旱性的重要调控因子。然而,GhWRKY207是否以及如何调节棉花对干旱胁迫的反应尚不清楚。在本研究中,我们确定了GhWRKY207在叶片中高表达,并受到干旱胁迫的诱导。它编码了一种具有转录激活活性的核蛋白。通过病毒诱导基因沉默(VIGS)对GhWRKY207进行沉默处理,棉花耐旱性显著降低。与此同时,过表达GhWRKY207在拟南芥野生型(WT)植物中明显增强了其抗旱性。此外,在水分亏缺条件下,GhWRKY207 VIGS植株丙二醛(MDA)含量、电解质泄漏百分比和O2·-积累速率显著增加,而GhWRKY207过表达系的这三个参数水平均显著低于对照。此外,GhWRKY207通过直接激活GhCu/Zn-SOD3 (GhCSD3)和GhFe-SOD2 (GhFSD2)基因的表达,增强了超氧化物歧化酶(SOD)活性。沉默GhCSD3或GhFSD2也显著降低了棉花植株的抗旱性。综上所述,GhWRKY207通过诱导棉花中GhCSD3和GhFSD2的表达,正向调节棉花的耐旱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信