Clonally expanded, targetable, natural killer-like NKG7 T cells seed the aged spinal cord to disrupt myeloid-dependent wound healing.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Guiping Kong, Yayue Song, Yuyang Yan, Samantha M Calderazzo, Madhu Sudhana Saddala, Fabian De Labastida Rivera, Jonathan D Cherry, Noah Eckman, Eric A Appel, Adam Velenosi, Vivek Swarup, Riki Kawaguchi, Susanna S Ng, Brian K Kwon, David Gate, Christian R Engwerda, Luming Zhou, Simone Di Giovanni
{"title":"Clonally expanded, targetable, natural killer-like NKG7 T cells seed the aged spinal cord to disrupt myeloid-dependent wound healing.","authors":"Guiping Kong, Yayue Song, Yuyang Yan, Samantha M Calderazzo, Madhu Sudhana Saddala, Fabian De Labastida Rivera, Jonathan D Cherry, Noah Eckman, Eric A Appel, Adam Velenosi, Vivek Swarup, Riki Kawaguchi, Susanna S Ng, Brian K Kwon, David Gate, Christian R Engwerda, Luming Zhou, Simone Di Giovanni","doi":"10.1016/j.neuron.2024.12.012","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury. NKLT cells accumulate in the spinal cord via C-X-C motif chemokine receptor 6 and ligand 16 signaling to clonally expand by engaging with major histocompatibility complex (MHC)-I-expressing myeloid cells. NKLT cells expressing natural killer cell granule protein 7 (Nkg7) disrupt myeloid-cell-dependent wound healing in the aged injured cord. Nkg7 deletion in mice curbs NKLT cell degranulation to normalize the myeloid cell phenotype, thus promoting tissue repair and axonal integrity. Monoclonal antibodies neutralizing CD8<sup>+</sup> T cells after SCI enhance neurological recovery by promoting wound healing. Our results unveil a reversible role for NKG7<sup>+</sup>CD8<sup>+</sup> NKLT cells in exacerbating tissue damage, suggesting a clinically relevant treatment for SCI.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury. NKLT cells accumulate in the spinal cord via C-X-C motif chemokine receptor 6 and ligand 16 signaling to clonally expand by engaging with major histocompatibility complex (MHC)-I-expressing myeloid cells. NKLT cells expressing natural killer cell granule protein 7 (Nkg7) disrupt myeloid-cell-dependent wound healing in the aged injured cord. Nkg7 deletion in mice curbs NKLT cell degranulation to normalize the myeloid cell phenotype, thus promoting tissue repair and axonal integrity. Monoclonal antibodies neutralizing CD8+ T cells after SCI enhance neurological recovery by promoting wound healing. Our results unveil a reversible role for NKG7+CD8+ NKLT cells in exacerbating tissue damage, suggesting a clinically relevant treatment for SCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信