Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema
{"title":"An extensive dataset of spiking activity to reveal the syntax of the ventral stream.","authors":"Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema","doi":"10.1016/j.neuron.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.