An extensive dataset of spiking activity to reveal the syntax of the ventral stream.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema
{"title":"An extensive dataset of spiking activity to reveal the syntax of the ventral stream.","authors":"Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema","doi":"10.1016/j.neuron.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信