{"title":"The Effect of Perceived Groove in Music on Effective Brain Connectivity during Cycling: An fNIRS Study.","authors":"Jiangang Chen, Gaoquan Zhou, Junbo Han, Pei Su, Hongli Zhang, Donghui Tang","doi":"10.1249/MSS.0000000000003609","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Perceived groove, a complex and integrated musical characteristic, is considered a core factor in inducing synchronization between movement and music. This study aimed to use functional near-infrared spectroscopy to explore the effective connectivity (EC) changes among brain regions during cycling activities under different perceived groove conditions.</p><p><strong>Methods: </strong>In a randomized crossover design, 18 university students performed 3-min cycling tasks under high (HG) and low (LG) perceived groove music conditions. Revolutions per minute, coefficient of variation of pedaling cadence, and sensorimotor coupling index were measured. Granger causality analyses were performed on the functional near-infrared spectroscopy data from the cycling task to obtain EC matrices at the brain region and channel (Ch) levels.</p><p><strong>Results: </strong>The revolution per minute was significantly higher, and coefficient of variation of pedaling cadence and sensorimotor coupling index were significantly lower in HG than in LG. The EC values of the Brodmann area (BA) 8→the left prefrontal cortex (lPFC), the superior portion of BA 6 (BA 6_Sup)→lPFC, and BA 1-3→lPFC were significantly higher in HG than in LG. Channel analyses indicated that the EC values of Ch 14→Ch 9, Ch 41→Ch 9, Ch 14→Ch 10, Ch 41→Ch 10, Ch 31→Ch 10, and Ch 35→Ch 23 were significantly higher in HG than in LG. Correlation analysis revealed that the EC values of the channels included in BA 6_Sup→lPFC were significantly correlated with cycling performance metrics.</p><p><strong>Conclusions: </strong>The EC changes from BA 6_Sup to lPFC may play a critical role in the process through which perceived groove affects the synchronization of cycling to music.</p>","PeriodicalId":18426,"journal":{"name":"Medicine and Science in Sports and Exercise","volume":" ","pages":"857-866"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and Science in Sports and Exercise","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1249/MSS.0000000000003609","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Perceived groove, a complex and integrated musical characteristic, is considered a core factor in inducing synchronization between movement and music. This study aimed to use functional near-infrared spectroscopy to explore the effective connectivity (EC) changes among brain regions during cycling activities under different perceived groove conditions.
Methods: In a randomized crossover design, 18 university students performed 3-min cycling tasks under high (HG) and low (LG) perceived groove music conditions. Revolutions per minute, coefficient of variation of pedaling cadence, and sensorimotor coupling index were measured. Granger causality analyses were performed on the functional near-infrared spectroscopy data from the cycling task to obtain EC matrices at the brain region and channel (Ch) levels.
Results: The revolution per minute was significantly higher, and coefficient of variation of pedaling cadence and sensorimotor coupling index were significantly lower in HG than in LG. The EC values of the Brodmann area (BA) 8→the left prefrontal cortex (lPFC), the superior portion of BA 6 (BA 6_Sup)→lPFC, and BA 1-3→lPFC were significantly higher in HG than in LG. Channel analyses indicated that the EC values of Ch 14→Ch 9, Ch 41→Ch 9, Ch 14→Ch 10, Ch 41→Ch 10, Ch 31→Ch 10, and Ch 35→Ch 23 were significantly higher in HG than in LG. Correlation analysis revealed that the EC values of the channels included in BA 6_Sup→lPFC were significantly correlated with cycling performance metrics.
Conclusions: The EC changes from BA 6_Sup to lPFC may play a critical role in the process through which perceived groove affects the synchronization of cycling to music.
期刊介绍:
Medicine & Science in Sports & Exercise® features original investigations, clinical studies, and comprehensive reviews on current topics in sports medicine and exercise science. With this leading multidisciplinary journal, exercise physiologists, physiatrists, physical therapists, team physicians, and athletic trainers get a vital exchange of information from basic and applied science, medicine, education, and allied health fields.