Strain engineering tuned vibrational dynamics of 2D transition metal dichalcogenide heterostructures: a first-principles investigation.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Santoshkumar Kaushik, Bhautik R Dhori, Saurav Patel, Paras Patel, Prafulla K Jha, P K Mehta
{"title":"Strain engineering tuned vibrational dynamics of 2D transition metal dichalcogenide heterostructures: a first-principles investigation.","authors":"Santoshkumar Kaushik, Bhautik R Dhori, Saurav Patel, Paras Patel, Prafulla K Jha, P K Mehta","doi":"10.1088/1361-648X/adaa44","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional materials. Numerous theoretical and experimental studies have significantly contributed to analyzing the properties of transition metal dichalcogenides, known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe<sub>2</sub>/MoSe<sub>2</sub>and MoSe<sub>2</sub>/WSe<sub>2</sub>/MoSe<sub>2</sub>vdW heterostructures using<i>first-principles</i>based density functional theory calculations. The dynamical stability of all vdW heterostructures makes them feasible in fabrication. Our phonon calculations and zone center phonon modes analysis signify that the interlayer interaction influences interlayer breathing and shear phonon modes, which play an important role in thermal properties. The effect of strain engineering on the vibrational modes and energy gap of vdW heterostructures are further discussed. The tensile and compressive biaxial strain on the vdW heterostructures results in phonon softening and hardening, respectively.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adaa44","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional materials. Numerous theoretical and experimental studies have significantly contributed to analyzing the properties of transition metal dichalcogenides, known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2and MoSe2/WSe2/MoSe2vdW heterostructures usingfirst-principlesbased density functional theory calculations. The dynamical stability of all vdW heterostructures makes them feasible in fabrication. Our phonon calculations and zone center phonon modes analysis signify that the interlayer interaction influences interlayer breathing and shear phonon modes, which play an important role in thermal properties. The effect of strain engineering on the vibrational modes and energy gap of vdW heterostructures are further discussed. The tensile and compressive biaxial strain on the vdW heterostructures results in phonon softening and hardening, respectively.

二维过渡金属二硫化物异质结构的应变工程调谐振动动力学:第一性原理研究。
通过应变工程创建范德华异质结构来控制振动模式和能隙是一种定制二维(2D)材料振动和电子特性的新方法。大量的理论和实验研究为分析以多功能应用而闻名的过渡金属二硫族化合物(TMDs)的性质做出了重大贡献。在本研究中,我们利用基于第一性原理的密度泛函理论计算,研究了WSe2/MoSe2和MoSe2/WSe2/MoSe2 vdW异质结构的应变和堆叠相关振动特性。所有vdW异质结构的动态稳定性使其在制造中成为可能。我们的声子计算和区中心声子模式分析表明,层间相互作用影响层间呼吸和剪切声子模式,这在热性能中起着重要作用。进一步讨论了应变工程对vdW异质结构振动模态和能隙的影响。vdW异质结构的拉伸和压缩双轴应变分别导致声子软化和硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信