Jianan Guo, Lina Chen, Xinying Zhang, Changmin Jin, Yue Cui
{"title":"From brushite to hydroxylapatite: A study on phosphate mineral transformation and the fate of oxytetracycline.","authors":"Jianan Guo, Lina Chen, Xinying Zhang, Changmin Jin, Yue Cui","doi":"10.1016/j.jconhyd.2025.104497","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil. However, the impact of the transformation process, particularly involving the metastable phase brushite (DCPD), on the fate of antibiotics remains unclear. In this study, we synthesized DCPD and hydroxylapatite (HAP) and examined their transformation process to assess their removal capacity and investigate the migration and fate of oxytetracycline (OTC). The findings reveal that HAP exhibits a maximum immobilization capacity for OTC of 20.10 mg/g, surpassing that of DCPD by 2.56 times (7.86 mg/g). This disparity in immobilization capacity between DCPD and HAP leads to a redistribution of OTC between the solid and liquid phases during the transformation process. Notably, the introduction of OTC also inhibits the transformation process, potentially impacting the fate of other potentially harmful elements. The study highlights that the transformation process of calcium phosphorus minerals has a significant impact on the mobility and fate of antibiotics in soil, which aids in better management and mitigation of the environmental risks associated with fertilizer application.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104497"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2025.104497","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil. However, the impact of the transformation process, particularly involving the metastable phase brushite (DCPD), on the fate of antibiotics remains unclear. In this study, we synthesized DCPD and hydroxylapatite (HAP) and examined their transformation process to assess their removal capacity and investigate the migration and fate of oxytetracycline (OTC). The findings reveal that HAP exhibits a maximum immobilization capacity for OTC of 20.10 mg/g, surpassing that of DCPD by 2.56 times (7.86 mg/g). This disparity in immobilization capacity between DCPD and HAP leads to a redistribution of OTC between the solid and liquid phases during the transformation process. Notably, the introduction of OTC also inhibits the transformation process, potentially impacting the fate of other potentially harmful elements. The study highlights that the transformation process of calcium phosphorus minerals has a significant impact on the mobility and fate of antibiotics in soil, which aids in better management and mitigation of the environmental risks associated with fertilizer application.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.