From brushite to hydroxylapatite: A study on phosphate mineral transformation and the fate of oxytetracycline.

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Jianan Guo, Lina Chen, Xinying Zhang, Changmin Jin, Yue Cui
{"title":"From brushite to hydroxylapatite: A study on phosphate mineral transformation and the fate of oxytetracycline.","authors":"Jianan Guo, Lina Chen, Xinying Zhang, Changmin Jin, Yue Cui","doi":"10.1016/j.jconhyd.2025.104497","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil. However, the impact of the transformation process, particularly involving the metastable phase brushite (DCPD), on the fate of antibiotics remains unclear. In this study, we synthesized DCPD and hydroxylapatite (HAP) and examined their transformation process to assess their removal capacity and investigate the migration and fate of oxytetracycline (OTC). The findings reveal that HAP exhibits a maximum immobilization capacity for OTC of 20.10 mg/g, surpassing that of DCPD by 2.56 times (7.86 mg/g). This disparity in immobilization capacity between DCPD and HAP leads to a redistribution of OTC between the solid and liquid phases during the transformation process. Notably, the introduction of OTC also inhibits the transformation process, potentially impacting the fate of other potentially harmful elements. The study highlights that the transformation process of calcium phosphorus minerals has a significant impact on the mobility and fate of antibiotics in soil, which aids in better management and mitigation of the environmental risks associated with fertilizer application.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104497"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2025.104497","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil. However, the impact of the transformation process, particularly involving the metastable phase brushite (DCPD), on the fate of antibiotics remains unclear. In this study, we synthesized DCPD and hydroxylapatite (HAP) and examined their transformation process to assess their removal capacity and investigate the migration and fate of oxytetracycline (OTC). The findings reveal that HAP exhibits a maximum immobilization capacity for OTC of 20.10 mg/g, surpassing that of DCPD by 2.56 times (7.86 mg/g). This disparity in immobilization capacity between DCPD and HAP leads to a redistribution of OTC between the solid and liquid phases during the transformation process. Notably, the introduction of OTC also inhibits the transformation process, potentially impacting the fate of other potentially harmful elements. The study highlights that the transformation process of calcium phosphorus minerals has a significant impact on the mobility and fate of antibiotics in soil, which aids in better management and mitigation of the environmental risks associated with fertilizer application.

禽畜粪便是中国农业中常见的肥料,由于抗生素和磷含量的升高,会导致环境污染和潜在的健康风险。重要的是,高含量的磷会引发土壤(尤其是石灰性土壤)中磷酸盐矿物的转化。磷酸盐矿物学的这些变化会对土壤中抗生素的迁移和归宿产生重大影响。然而,转化过程对抗生素归宿的影响,尤其是涉及到易变相刷状石(DCPD)的转化过程对抗生素归宿的影响仍不清楚。在本研究中,我们合成了 DCPD 和羟基磷灰石 (HAP),并考察了它们的转化过程,以评估它们的去除能力,并研究土霉素 (OTC) 的迁移和归宿。研究结果表明,HAP 对 OTC 的最大固定能力为 20.10 毫克/克,是 DCPD 的 2.56 倍(7.86 毫克/克)。DCPD 和 HAP 在固定能力上的差异导致 OTC 在转化过程中在固相和液相之间重新分布。值得注意的是,引入 OTC 还会抑制转化过程,从而可能影响其他潜在有害元素的去向。该研究强调,磷钙矿物的转化过程对土壤中抗生素的流动性和归宿有重大影响,这有助于更好地管理和减轻与施肥相关的环境风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信