Mounir El Hankouri, Marco Nousch, Aayush Poddar, Thomas Müller-Reichert, Gunar Fabig
{"title":"In situ quantification of ribosome number by electron tomography.","authors":"Mounir El Hankouri, Marco Nousch, Aayush Poddar, Thomas Müller-Reichert, Gunar Fabig","doi":"10.1111/jmi.13380","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed. In this study, we developed a microscopic method to quantify the total number of ribosomes in hTERT-RPE-1 cells and in nematode cells from various tissues of Caenorhabditis elegans hermaphrodites. Using electron tomography of high-pressure frozen, freeze-substituted and resin-embedded samples, we determined that the ribosome number in hTERT-RPE-1 cells is in the same order of magnitude as biochemical measurements obtained via RNA capillary electrophoresis. As expected, control worms exhibited a higher number of ribosomes compared to RNA polymerase I A subunit (RPOA-1)-depleted worms in two out of three analysed tissue types. Our imaging-based approach complements established biochemical methods by enabling direct quantification of ribosome numbers in specific samples. This method offers a powerful tool for advancing our understanding of ribosome localisation and distribution in cells and tissues across diverse model systems.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13380","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed. In this study, we developed a microscopic method to quantify the total number of ribosomes in hTERT-RPE-1 cells and in nematode cells from various tissues of Caenorhabditis elegans hermaphrodites. Using electron tomography of high-pressure frozen, freeze-substituted and resin-embedded samples, we determined that the ribosome number in hTERT-RPE-1 cells is in the same order of magnitude as biochemical measurements obtained via RNA capillary electrophoresis. As expected, control worms exhibited a higher number of ribosomes compared to RNA polymerase I A subunit (RPOA-1)-depleted worms in two out of three analysed tissue types. Our imaging-based approach complements established biochemical methods by enabling direct quantification of ribosome numbers in specific samples. This method offers a powerful tool for advancing our understanding of ribosome localisation and distribution in cells and tissues across diverse model systems.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.