Robust analysis of diel activity patterns.

IF 3.5 1区 环境科学与生态学 Q1 ECOLOGY
Neil A Gilbert, Davide M Dominoni
{"title":"Robust analysis of diel activity patterns.","authors":"Neil A Gilbert, Davide M Dominoni","doi":"10.1111/1365-2656.14235","DOIUrl":null,"url":null,"abstract":"<p><p>Research Highlight: Iannarilli, F., Gerber, B. D., Erb, J., & Fieberg, J. R. (2024). A 'how-to' guide for estimating animal diel activity using hierarchical models. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14213. Diel activity patterns are ubiquitous in living organisms and have received considerable research attention with advances in the collection of time-stamped data and the recognition that organisms may respond to global change via behaviour timing. Iannarilli et al. (2024) provide a roadmap for analysing diel activity patterns with hierarchical models, specifically trigonometric generalized linear mixed-effect models and cyclic cubic spline generalized additive models. These methods are improvements over kernel density estimators, which for nearly two decades have been the status quo for analysing activity patterns. Kernel density estimators have several drawbacks; most notably, data are typically aggregated (e.g. across locations) to achieve sufficient sample sizes, and covariates cannot be incorporated to quantify the influence of environmental variables on activity timing. Iannarilli et al. (2024) also provide a comprehensive tutorial which demonstrates how to format data, fit models, and interpret model predictions. We believe that hierarchical models will become indispensable tools for activity-timing research and envision the development of many extensions to the approaches described by Iannarilli et al. (2024).</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.14235","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research Highlight: Iannarilli, F., Gerber, B. D., Erb, J., & Fieberg, J. R. (2024). A 'how-to' guide for estimating animal diel activity using hierarchical models. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14213. Diel activity patterns are ubiquitous in living organisms and have received considerable research attention with advances in the collection of time-stamped data and the recognition that organisms may respond to global change via behaviour timing. Iannarilli et al. (2024) provide a roadmap for analysing diel activity patterns with hierarchical models, specifically trigonometric generalized linear mixed-effect models and cyclic cubic spline generalized additive models. These methods are improvements over kernel density estimators, which for nearly two decades have been the status quo for analysing activity patterns. Kernel density estimators have several drawbacks; most notably, data are typically aggregated (e.g. across locations) to achieve sufficient sample sizes, and covariates cannot be incorporated to quantify the influence of environmental variables on activity timing. Iannarilli et al. (2024) also provide a comprehensive tutorial which demonstrates how to format data, fit models, and interpret model predictions. We believe that hierarchical models will become indispensable tools for activity-timing research and envision the development of many extensions to the approaches described by Iannarilli et al. (2024).

对死亡活动模式的稳健分析。
研究亮点:Iannarilli, F., Gerber, b.d., Erb, J., & Fieberg, J. R.(2024)。使用分层模型估计动物饮食活动的“操作指南”。动物生态学杂志,https://doi.org/10.1111/1365-2656.14213。Diel活动模式在生物体中普遍存在,随着时间戳数据收集的进展以及生物体可能通过行为定时对全球变化做出反应的认识,Diel活动模式受到了相当大的研究关注。Iannarilli等人(2024)提供了一个用分层模型分析迪尔活动模式的路线图,特别是三角广义线性混合效应模型和循环三次样条广义加性模型。这些方法是对核密度估计的改进,核密度估计近二十年来一直是分析活动模式的现状。核密度估计有几个缺点;最值得注意的是,数据通常被汇总(例如跨地点)以获得足够的样本量,协变量不能被纳入以量化环境变量对活动时间的影响。Iannarilli等人(2024)也提供了一个全面的教程,演示了如何格式化数据、拟合模型和解释模型预测。我们相信层次模型将成为活动计时研究不可或缺的工具,并设想Iannarilli等人(2024)所描述的方法的许多扩展的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Animal Ecology
Journal of Animal Ecology 环境科学-动物学
CiteScore
9.10
自引率
4.20%
发文量
188
审稿时长
3 months
期刊介绍: Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信