Haokun Yuan, Eric H Y Lau, Benjamin J Cowling, Wan Yang
{"title":"Improving influenza forecast in the tropics and subtropics: a case study of Hong Kong.","authors":"Haokun Yuan, Eric H Y Lau, Benjamin J Cowling, Wan Yang","doi":"10.1098/rsif.2024.0649","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza forecasts could aid public health response as shown for temperate regions, but such efforts are more challenging in the tropics and subtropics due to more irregular influenza activities. Here, we built six forecast approaches for influenza in the (sub)tropics, with six model forms designed to model seasonal infection risk (i.e. seasonality) based on the dependence of virus survival on climate conditions and to flexibly account for immunity waning. We ran the models jointly with the ensemble adjustment Kalman filter to generate retrospective forecasts of influenza incidence in subtropical Hong Kong from January 1999 to December 2019 including the 2009 A(H1N1)pdm09 pandemic. In addition to short-term targets (one to four weeks ahead predictions), we also tested mid-range (one to three months) and long-range (four to six months) forecasts, which could be valuable for long-term planning. The largest improvement came from the inclusion of climate-modulated seasonality modelling, particularly for the mid- and long-range forecasts. The best-performing approach included a seasonal-trend-based climate modulation and assumed mixed immunity waning; the forecast accuracies, including peak week and intensity, were comparable to that reported for temperate regions including the USA. These findings demonstrate that incorporating mechanisms of climate modulation on influenza transmission can substantially improve forecast performance in the (sub)tropics.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240649"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0649","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Influenza forecasts could aid public health response as shown for temperate regions, but such efforts are more challenging in the tropics and subtropics due to more irregular influenza activities. Here, we built six forecast approaches for influenza in the (sub)tropics, with six model forms designed to model seasonal infection risk (i.e. seasonality) based on the dependence of virus survival on climate conditions and to flexibly account for immunity waning. We ran the models jointly with the ensemble adjustment Kalman filter to generate retrospective forecasts of influenza incidence in subtropical Hong Kong from January 1999 to December 2019 including the 2009 A(H1N1)pdm09 pandemic. In addition to short-term targets (one to four weeks ahead predictions), we also tested mid-range (one to three months) and long-range (four to six months) forecasts, which could be valuable for long-term planning. The largest improvement came from the inclusion of climate-modulated seasonality modelling, particularly for the mid- and long-range forecasts. The best-performing approach included a seasonal-trend-based climate modulation and assumed mixed immunity waning; the forecast accuracies, including peak week and intensity, were comparable to that reported for temperate regions including the USA. These findings demonstrate that incorporating mechanisms of climate modulation on influenza transmission can substantially improve forecast performance in the (sub)tropics.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.