Selenium enrichment enhances the alleviating effect of Lactobacillus rhamnosus GG on alcoholic liver injury in mice.

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Current Research in Food Science Pub Date : 2024-12-18 eCollection Date: 2025-01-01 DOI:10.1016/j.crfs.2024.100964
Ziyi Yang, Jingyu Lian, Yuheng Yang, Jiayi Li, Weiling Guo, Xucong Lv, Li Ni, Youting Chen
{"title":"Selenium enrichment enhances the alleviating effect of <i>Lactobacillus rhamnosus</i> GG on alcoholic liver injury in mice.","authors":"Ziyi Yang, Jingyu Lian, Yuheng Yang, Jiayi Li, Weiling Guo, Xucong Lv, Li Ni, Youting Chen","doi":"10.1016/j.crfs.2024.100964","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched <i>Lactobacillus rhamnosus</i> GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI. Oral LGG@Se effectively prevented lipid metabolism disorders and liver oxidative damage in mice caused by excessive alcohol intake. 16S amplicon sequencing showed that LGG@Se intervention increased the abundance of beneficial bacteria and suppressed the growth of harmful bacteria in the intestinal tract of over-drinking mice, and thus effectively modulated the homeostasis of intestinal flora, which were highly correlated with the improvement of liver function. Liver metabolomics analysis indicated that LGG@Se intervention altered liver metabolic profiling, and the characteristic biomarkers were mainly involved in amino acid metabolism, including alanine, aspartate and glutamate metabolism, arginine biosynthesis, <i>etc</i>. In addition, LGG@Se intervention modulated the expression of genes and proteins related to lipid metabolism and oxidative stress in liver of over-drinking mice. Western blot analysis revealed that LGG@Se intervention up-regulated the expression of intestinal barrier function-related proteins, thereby ameliorating alcohol-induced intestinal barrier damage. Collectively, these findings provide scientific evidence that LGG@Se possesses the biological activity of improving alcohol-induced lipid metabolism and intestinal microbiota disorder.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"100964"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100964","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched Lactobacillus rhamnosus GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI. Oral LGG@Se effectively prevented lipid metabolism disorders and liver oxidative damage in mice caused by excessive alcohol intake. 16S amplicon sequencing showed that LGG@Se intervention increased the abundance of beneficial bacteria and suppressed the growth of harmful bacteria in the intestinal tract of over-drinking mice, and thus effectively modulated the homeostasis of intestinal flora, which were highly correlated with the improvement of liver function. Liver metabolomics analysis indicated that LGG@Se intervention altered liver metabolic profiling, and the characteristic biomarkers were mainly involved in amino acid metabolism, including alanine, aspartate and glutamate metabolism, arginine biosynthesis, etc. In addition, LGG@Se intervention modulated the expression of genes and proteins related to lipid metabolism and oxidative stress in liver of over-drinking mice. Western blot analysis revealed that LGG@Se intervention up-regulated the expression of intestinal barrier function-related proteins, thereby ameliorating alcohol-induced intestinal barrier damage. Collectively, these findings provide scientific evidence that LGG@Se possesses the biological activity of improving alcohol-induced lipid metabolism and intestinal microbiota disorder.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信