Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.

IF 2.2 4区 化学 Q2 CHEMISTRY, ORGANIC
Beilstein Journal of Organic Chemistry Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI:10.3762/bjoc.21.5
Remi Peters, Levy A Charleston, Karinan van Eck, Teun van Berlo, Daniela A Wilson
{"title":"Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.","authors":"Remi Peters, Levy A Charleston, Karinan van Eck, Teun van Berlo, Daniela A Wilson","doi":"10.3762/bjoc.21.5","DOIUrl":null,"url":null,"abstract":"<p><p>Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes. Under ambient conditions, the shape transformation is restricted to bowl-shaped vesicles due to the membrane's flexibility and permeability. However, dehydration of the polysarcosine broadens the possibilities for shape transformation. These novel structures exhibit asymmetry and possess the capability to encapsulate smaller structures, thereby broadening their potential applications in drug delivery and nanotechnology. Our findings shed light on the unique capabilities of polysarcosine-based polymers, paving the way for further exploration and harnessing of their distinctive properties in biomedical research.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"47-54"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes. Under ambient conditions, the shape transformation is restricted to bowl-shaped vesicles due to the membrane's flexibility and permeability. However, dehydration of the polysarcosine broadens the possibilities for shape transformation. These novel structures exhibit asymmetry and possess the capability to encapsulate smaller structures, thereby broadening their potential applications in drug delivery and nanotechnology. Our findings shed light on the unique capabilities of polysarcosine-based polymers, paving the way for further exploration and harnessing of their distinctive properties in biomedical research.

热形态转化:PSar脱水在气孔细胞形态发生中的作用。
聚arcos在生物相容性和可降解性方面具有优势,是聚乙二醇(PEG)在生物医学应用中的一个很有前景的替代品。虽然含有聚精氨酸聚合物的嵌段共聚物的自组装行为已经被报道,但它们的形状转换潜力仍然很大程度上未被开发,限制了它们在各种应用中的多功能性。在这项研究中,我们提出了一种综合的方法来合成、自组装和转化聚精氨酸-聚(谷氨酸苄)嵌段共聚物,从而形成碗状的囊泡、盘和口细胞。在环境条件下,由于膜的柔韧性和渗透性,其形状转变仅限于碗状囊泡。然而,多糖的脱水扩大了形状转变的可能性。这些新型结构表现出不对称性,并具有封装较小结构的能力,从而扩大了它们在药物输送和纳米技术方面的潜在应用。我们的发现揭示了聚精氨酸基聚合物的独特功能,为进一步探索和利用其在生物医学研究中的独特特性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信