Veronika Lukasová, Svetlana Varšová, Lucia Žatková, Katarína Adamčíková, Anna Buchholcerová, Milan Onderka, Rastislav Milovský, Dušan Bilčík, Veronika Mináriková
{"title":"Indication of the sensitivity of Pinaceae species growing in Eastern Central Europe to ground-level ozone pollution.","authors":"Veronika Lukasová, Svetlana Varšová, Lucia Žatková, Katarína Adamčíková, Anna Buchholcerová, Milan Onderka, Rastislav Milovský, Dušan Bilčík, Veronika Mináriková","doi":"10.1007/s11356-025-35905-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O<sub>3</sub>. Ozonation induced changes in the chemical composition of the needles, which were detected via gas chromatography-mass spectrometry. The oxidative stability (OxS) indicator derived from INXs was used to determine the stomatal O<sub>3</sub> flux-based critical level CL(OxS), with the threshold value of OxS at -0.05, corresponding to 5% injury to the needles. Assessment of the phytotoxic ozone dose (POD0) under ambient O<sub>3</sub> and field environmental conditions during the 2023 growing season via CL(OxS) revealed that the studied species utilised between 18% (Abies alba FH) and 33% (Pinus mugo ATE) of their O<sub>3</sub> tolerance potential. These results support our hypothesis that Pinaceae species growing in the High Tatras, which are part of the Alpine biogeographical region of Eastern Central Europe, are vulnerable to O<sub>3</sub> concentrations significantly higher than the typical ambient O<sub>3</sub> level in the natural environment.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35905-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O3. Ozonation induced changes in the chemical composition of the needles, which were detected via gas chromatography-mass spectrometry. The oxidative stability (OxS) indicator derived from INXs was used to determine the stomatal O3 flux-based critical level CL(OxS), with the threshold value of OxS at -0.05, corresponding to 5% injury to the needles. Assessment of the phytotoxic ozone dose (POD0) under ambient O3 and field environmental conditions during the 2023 growing season via CL(OxS) revealed that the studied species utilised between 18% (Abies alba FH) and 33% (Pinus mugo ATE) of their O3 tolerance potential. These results support our hypothesis that Pinaceae species growing in the High Tatras, which are part of the Alpine biogeographical region of Eastern Central Europe, are vulnerable to O3 concentrations significantly higher than the typical ambient O3 level in the natural environment.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.