Unnur Magnusdottir , Finnbogi R. Thormodsson , Lilja Kjalarsdottir , Hordur Filippusson , Johannes Gislason , Kristinn Ragnar Oskarsson , Jens G. Hjorleifsson , Jon M. Einarsson
{"title":"Heparin-binding of the human chitinase-like protein YKL-40 is allosterically modified by chitin oligosaccharides","authors":"Unnur Magnusdottir , Finnbogi R. Thormodsson , Lilja Kjalarsdottir , Hordur Filippusson , Johannes Gislason , Kristinn Ragnar Oskarsson , Jens G. Hjorleifsson , Jon M. Einarsson","doi":"10.1016/j.bbrep.2024.101908","DOIUrl":null,"url":null,"abstract":"<div><div>The chitinase-like protein YKL-40 (CHI3L1) has been implicated in the pathophysiology of inflammation and cancer. Recent studies highlight the growing interest in targeting and blocking the activity of YKL-40 to treat cancer. Some of those targeting-strategies have been developed to directly block the heparin-affinity of YKL-40 with promising results. This study explores how short chain chitooligosaccharides (ChOS) affect the heparin-binding affinity of YKL-40. Our findings reveal that ChOS act as allosteric effectors, decreasing the heparin-binding affinity of YKL-40 in a size- and dose-dependent manner. Our results provide insights into the heparin affinity of YKL-40 and how ChOS can be used to target the heparin activity of YKL-40 in diseases. Since ChOS has many beneficial properties, such as being non-toxic and biodegradable, these results provide intriguing opportunities for applying them as allosteric effectors of the heparin-binding affinity of YKL-40.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101908"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The chitinase-like protein YKL-40 (CHI3L1) has been implicated in the pathophysiology of inflammation and cancer. Recent studies highlight the growing interest in targeting and blocking the activity of YKL-40 to treat cancer. Some of those targeting-strategies have been developed to directly block the heparin-affinity of YKL-40 with promising results. This study explores how short chain chitooligosaccharides (ChOS) affect the heparin-binding affinity of YKL-40. Our findings reveal that ChOS act as allosteric effectors, decreasing the heparin-binding affinity of YKL-40 in a size- and dose-dependent manner. Our results provide insights into the heparin affinity of YKL-40 and how ChOS can be used to target the heparin activity of YKL-40 in diseases. Since ChOS has many beneficial properties, such as being non-toxic and biodegradable, these results provide intriguing opportunities for applying them as allosteric effectors of the heparin-binding affinity of YKL-40.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.