Engineering Cascade Bio-solar Cells Inspired by the Z-Scheme of Oxygenic Photosynthesis: Layered Chlorophyll and Bacterio-chlorophyll Derivatives.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-15 DOI:10.1002/cssc.202402588
Shengnan Duan, Teng Gu, Chiasa Uragami, Shin-Ichi Sasaki, Yuanqi Zhou, Ruohan Tao, Xianju Zhou, Chunbao Feng, Hitoshi Tamiaki, Xiao-Feng Wang, Zeyun Xiao, Hideki Hashimoto
{"title":"Engineering Cascade Bio-solar Cells Inspired by the Z-Scheme of Oxygenic Photosynthesis: Layered Chlorophyll and Bacterio-chlorophyll Derivatives.","authors":"Shengnan Duan, Teng Gu, Chiasa Uragami, Shin-Ichi Sasaki, Yuanqi Zhou, Ruohan Tao, Xianju Zhou, Chunbao Feng, Hitoshi Tamiaki, Xiao-Feng Wang, Zeyun Xiao, Hideki Hashimoto","doi":"10.1002/cssc.202402588","DOIUrl":null,"url":null,"abstract":"<p><p>The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer. The resulting photocurrent, prominently detected in the near-infrared region, is validated through external quantum efficiency measurements. Sub-nanosecond transient absorption spectroscopy reveals a prolonged charge transfer (CT) state from BChl to Chl (Chl-/BChl+ species) compared to the reverse direction (Chl+/BChl- species). This asymmetry highlights a dominant electron flow from BChl (PSII analog) to Chl (PSI analog) under simultaneous excitation, effectively replicating the natural Z-scheme electron transfer. These findings represent a significant advance in the design of bio-inspired solar cells, paving the way for artificial photosynthesis systems and offering profound insights into improving photovoltaic theory and efficiency.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402588"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402588","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer. The resulting photocurrent, prominently detected in the near-infrared region, is validated through external quantum efficiency measurements. Sub-nanosecond transient absorption spectroscopy reveals a prolonged charge transfer (CT) state from BChl to Chl (Chl-/BChl+ species) compared to the reverse direction (Chl+/BChl- species). This asymmetry highlights a dominant electron flow from BChl (PSII analog) to Chl (PSI analog) under simultaneous excitation, effectively replicating the natural Z-scheme electron transfer. These findings represent a significant advance in the design of bio-inspired solar cells, paving the way for artificial photosynthesis systems and offering profound insights into improving photovoltaic theory and efficiency.

受氧光合作用z方案启发的工程级联生物太阳能电池:层状叶绿素和细菌-叶绿素衍生物。
尽管PSII的能级较低,但天然的氧光合作用的Z-scheme通过电子传递链有效地驱动电子从光系统II (PSII)转移到光系统I (PSI)。受这种复杂机制的启发,我们提出了一种模拟z方案的分层级联生物太阳能电池(CBSC)。在本设计中,叶绿素衍生物(Chl)在活性层中作为PSI类似物,细菌叶绿素衍生物(BChl)在活性层中作为PSII类似物。由此产生的光电流,在近红外区域显著检测到,通过外部量子效率测量验证。亚纳秒瞬态吸收光谱显示,从BChl到Chl (Chl-/BChl+种)的电荷转移态(CT)较反向(Chl+/BChl-种)延长。这种不对称性突出了在同步激发下,电子从BChl (PSII模拟物)流向Chl (PSI模拟物),有效地复制了自然的Z-scheme电子转移。这些发现代表了生物启发太阳能电池设计的重大进步,为人工光合作用系统铺平了道路,并为改进光伏理论和效率提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信