Yapeng Zhang, Zhidong Ma, Wenqiang Li, Chenwen Liu, Huipeng Gao, Meng Wang, Lanpeng Li, Quan Zhang, Bo Lv, Lei Qin, Chun Li
{"title":"Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory.","authors":"Yapeng Zhang, Zhidong Ma, Wenqiang Li, Chenwen Liu, Huipeng Gao, Meng Wang, Lanpeng Li, Quan Zhang, Bo Lv, Lei Qin, Chun Li","doi":"10.1016/j.biortech.2025.132064","DOIUrl":null,"url":null,"abstract":"<p><p>Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.1-fold increase in α-pinene production compared to the control. By enhancing the mevalonate pathway and expanding the cytosolic acetyl-CoA pool, α-pinene production was further increased. Overexpression of the transporter Sge1 resulted in a redistribution of global gene transcription, leading to an increased flux of α-pinene synthesis. By optimizing the aeration flow rate in 3-L bioreactors, the α-pinene production reached 1.8 g/L, which is the highest reported α-pinene production in cell factories. Our research provides insights and fundamentals for the efficient synthesis of monoterpenoids in microbial cell factories.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132064"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132064","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.1-fold increase in α-pinene production compared to the control. By enhancing the mevalonate pathway and expanding the cytosolic acetyl-CoA pool, α-pinene production was further increased. Overexpression of the transporter Sge1 resulted in a redistribution of global gene transcription, leading to an increased flux of α-pinene synthesis. By optimizing the aeration flow rate in 3-L bioreactors, the α-pinene production reached 1.8 g/L, which is the highest reported α-pinene production in cell factories. Our research provides insights and fundamentals for the efficient synthesis of monoterpenoids in microbial cell factories.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.