Adsorption of sulfamethoxazole in an aqueous environment onto a novel magnetic sporopollenin-cellulose triacetate.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ismaila Olalekan Saheed, Lee Ruo Ying, Syed Fariq Fathullah Syed Yaacob, Megat Ahmad Kamal Megat Hanafiah, Ahmad Faiz Abdul Latip, Faiz Bukhari Mohd Suah
{"title":"Adsorption of sulfamethoxazole in an aqueous environment onto a novel magnetic sporopollenin-cellulose triacetate.","authors":"Ismaila Olalekan Saheed, Lee Ruo Ying, Syed Fariq Fathullah Syed Yaacob, Megat Ahmad Kamal Megat Hanafiah, Ahmad Faiz Abdul Latip, Faiz Bukhari Mohd Suah","doi":"10.1016/j.ijbiomac.2025.139787","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution. The assessment of Msp-CTA characteristics via instrumentations revealed a mesoporous adsorbent having COO-, -OH, CO, and Fe - O as its potential adsorption binding sites. Improved stability gained from blending sporopollenin (Sp) and cellulose triacetate (CTA) was affirmed through TGA analysis. Minimal competition for the adsorption sites by H<sup>+</sup> and OH<sup>-</sup> favours efficient SMZ adsorption onto Msp-CTA at pH 3 and 5 with %removal of 78.7 and 83.1 %, respectively, using 40 mg/L initial SMZ concentration. The monolayer adsorption capacities 15.14 and 15.52 mg/g were obtained from nonlinear and linear Langmuir isotherms, respectively. The adsorption process is best described by Temkin > Hill > Langmuir > Freundlich isotherms based on proximity of correlation coefficient R<sup>2</sup> to 1. The best fit to Temkin suggests that SMZ adsorption's energy decreases proportionally with increasing surface coverage of Msp-CTA. The adsorption process is arbitrated to conform best to pseudo-second order (PSO) kinetic, though a bias is perceived in the linear fitting. Msp-CTA shows reusable potential with 65.9 % desorption at third cycle. The thermodynamic studies revealed an endothermic process. Hence, Msp-CTA demonstrates potential as an alternative adsorbent for sulfonamide-based antibiotics' removal from wastewater.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139787"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution. The assessment of Msp-CTA characteristics via instrumentations revealed a mesoporous adsorbent having COO-, -OH, CO, and Fe - O as its potential adsorption binding sites. Improved stability gained from blending sporopollenin (Sp) and cellulose triacetate (CTA) was affirmed through TGA analysis. Minimal competition for the adsorption sites by H+ and OH- favours efficient SMZ adsorption onto Msp-CTA at pH 3 and 5 with %removal of 78.7 and 83.1 %, respectively, using 40 mg/L initial SMZ concentration. The monolayer adsorption capacities 15.14 and 15.52 mg/g were obtained from nonlinear and linear Langmuir isotherms, respectively. The adsorption process is best described by Temkin > Hill > Langmuir > Freundlich isotherms based on proximity of correlation coefficient R2 to 1. The best fit to Temkin suggests that SMZ adsorption's energy decreases proportionally with increasing surface coverage of Msp-CTA. The adsorption process is arbitrated to conform best to pseudo-second order (PSO) kinetic, though a bias is perceived in the linear fitting. Msp-CTA shows reusable potential with 65.9 % desorption at third cycle. The thermodynamic studies revealed an endothermic process. Hence, Msp-CTA demonstrates potential as an alternative adsorbent for sulfonamide-based antibiotics' removal from wastewater.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信