{"title":"Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN<sub>4</sub>/metal interfaces.","authors":"Wen Ai, Xiaohui Hu, Tao Xu, Jian Yang, Litao Sun","doi":"10.1039/d4nh00493k","DOIUrl":null,"url":null,"abstract":"<p><p>Janus MoSiGeN<sub>4</sub> monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN<sub>4</sub> monolayer and metal electrode contacts. The results demonstrated that the n-type/p-type Schottky and n-type Ohmic contacts can be realized in metal/MoSiGeN<sub>4</sub> by changing the built-in electric dipole orientation of MoSiGeN<sub>4</sub>. Specifically, the contact type of Cu/MoSiGeN<sub>4</sub> (Au/MoSiGeN<sub>4</sub>) transfers from an n-type Schottky (p-type Schottky) contact to an n-type Ohmic (n-type Schottky) contact when the contact side of MoSiGeN<sub>4</sub> switches from Si-N to Ge-N. In addition, the Fermi level pinning (FLP) effect of metal/MoSiGeN<sub>4</sub> with the Si-N side is weaker than that of metal/MoSiGeN<sub>4</sub> with the Ge-N side due to the effect of intrinsic dipole and interface dipole. Notably, a simplified mathematical expression Δ<i>V</i>/<i>W</i><sub>M</sub> is developed to describe the Schottky barrier height at metal/MoSiGeN<sub>4</sub> interfaces using the machine learning method. These findings offer valuable guidance for the design and development of high-performance Janus MoSiGeN<sub>4</sub>-based electronic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00493k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Janus MoSiGeN4 monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN4 monolayer and metal electrode contacts. The results demonstrated that the n-type/p-type Schottky and n-type Ohmic contacts can be realized in metal/MoSiGeN4 by changing the built-in electric dipole orientation of MoSiGeN4. Specifically, the contact type of Cu/MoSiGeN4 (Au/MoSiGeN4) transfers from an n-type Schottky (p-type Schottky) contact to an n-type Ohmic (n-type Schottky) contact when the contact side of MoSiGeN4 switches from Si-N to Ge-N. In addition, the Fermi level pinning (FLP) effect of metal/MoSiGeN4 with the Si-N side is weaker than that of metal/MoSiGeN4 with the Ge-N side due to the effect of intrinsic dipole and interface dipole. Notably, a simplified mathematical expression ΔV/WM is developed to describe the Schottky barrier height at metal/MoSiGeN4 interfaces using the machine learning method. These findings offer valuable guidance for the design and development of high-performance Janus MoSiGeN4-based electronic devices.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.