Total Synthesis of Antiausterity Agent Callistrilone O Reveals Promising Antitumor Activity in a Melanoma Homograft Mouse Model.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-15 DOI:10.1002/cmdc.202400818
Kensuke Okuda, Akira Takagi, Ryohei Shimizu, Kensuke Nishi, Narumi Hayano, Ippei Takasihma, Morichika Konishi
{"title":"Total Synthesis of Antiausterity Agent Callistrilone O Reveals Promising Antitumor Activity in a Melanoma Homograft Mouse Model.","authors":"Kensuke Okuda, Akira Takagi, Ryohei Shimizu, Kensuke Nishi, Narumi Hayano, Ippei Takasihma, Morichika Konishi","doi":"10.1002/cmdc.202400818","DOIUrl":null,"url":null,"abstract":"<p><p>The antiausterity strategy in anticancer drug discovery has attracted much attention as a way to exterminate cancer cells under nutrient deprived conditions which are commonly found in solid tumors. These tumors under low nutrient stress are known to be malignant and often resist conventional drug therapy. As a potential drug candidate, we focused on the meroterpenoid natural product callistrilone O which has demonstrated extremely potent antiausterity properties toward PANC-1 pancreatic carcinoma in vitro. Here, we report for the first time the total synthesis of callistrilone O in seven steps from phloroglucinol. A Friedel-Crafts-type Michael addition and an oxidative [3 + 2] cycloaddition with Fetizon's reagent were used to construct the molecular skeleton. The preferential cytotoxicity of callistrilone O was also evaluated with multiple starvation-resistant cancer cell lines under low nutrient conditions. Furthermore, callistrilone O was found to strongly suppress B16 melanoma tumor growth without critical toxicity in vivo. Overall, this study presents a novel anticancer agent candidate from natural products with a concise synthetic route which can be readily applied to the synthesis of derivatives.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400818"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The antiausterity strategy in anticancer drug discovery has attracted much attention as a way to exterminate cancer cells under nutrient deprived conditions which are commonly found in solid tumors. These tumors under low nutrient stress are known to be malignant and often resist conventional drug therapy. As a potential drug candidate, we focused on the meroterpenoid natural product callistrilone O which has demonstrated extremely potent antiausterity properties toward PANC-1 pancreatic carcinoma in vitro. Here, we report for the first time the total synthesis of callistrilone O in seven steps from phloroglucinol. A Friedel-Crafts-type Michael addition and an oxidative [3 + 2] cycloaddition with Fetizon's reagent were used to construct the molecular skeleton. The preferential cytotoxicity of callistrilone O was also evaluated with multiple starvation-resistant cancer cell lines under low nutrient conditions. Furthermore, callistrilone O was found to strongly suppress B16 melanoma tumor growth without critical toxicity in vivo. Overall, this study presents a novel anticancer agent candidate from natural products with a concise synthetic route which can be readily applied to the synthesis of derivatives.

抗肿瘤药物Callistrilone O的全合成在黑色素瘤同种移植小鼠模型中显示出有希望的抗肿瘤活性。
抗紧缩策略作为一种消灭实体肿瘤中常见的营养剥夺条件下的癌细胞的方法,在抗癌药物开发中受到了广泛的关注。这些在低营养胁迫下的肿瘤是恶性的,通常抵抗常规药物治疗。作为潜在的候选药物,我们重点研究了美罗萜类天然产物callistrilone O,它在体外对PANC-1胰腺癌具有非常有效的抗紧缩特性。本文首次报道了间苯三酚七步合成卡利斯特酮O。采用Friedel-Crafts-type Michael加成法和Fetizon试剂氧化[3 + 2]环加成法构建分子骨架。在低营养条件下,用多种抗饥饿癌细胞系评价了callistrilone O的优先细胞毒性。此外,callistrilone O被发现强烈抑制B16黑色素瘤的肿瘤生长,而在体内没有严重的毒性。总的来说,本研究从天然产物中获得了一种新的候选抗癌药物,其合成路线简洁,易于应用于衍生物的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信