Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery.
{"title":"Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery.","authors":"Jean V Wilkening, Todd E Dawson, Sally E Thompson","doi":"10.1111/pce.15349","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15349","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.