Siyu Fan, Yue Zhang, Anna P Ainslie, Renée Seinstra, Tao Zhang, Ellen Nollen, Romana Schirhagl
{"title":"In Vivo Nanodiamond Quantum Sensing of Free Radicals in Caenorhabditis elegans Models.","authors":"Siyu Fan, Yue Zhang, Anna P Ainslie, Renée Seinstra, Tao Zhang, Ellen Nollen, Romana Schirhagl","doi":"10.1002/advs.202412300","DOIUrl":null,"url":null,"abstract":"<p><p>Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range. Here, a quantum sensing technique (T1 relaxometry) is used that involves fluorescent nanodiamonds (FND). Nitrogen vacancy (NV) centers within these nanodiamonds change their optical properties in response to magnetic noise, which allows detecting the unpaired electron from free radicals. This method is used to monitor the production of free radicals inside Caenorhabditis elegans models of Huntington's disease in vivo and in real-time. To investigate if radical generation occurs near polyglutamine expansions, a strain expressing Q40 yellow fluorescent protein (Q40::YFP, polyglutamine expansion overexpressed in the muscle) is used. By applying T1 relaxometry on FNDs in the body wall muscle, it is found that the production of free radicals significantly increase when PolyQ is expressed there (compared to the FNDs in intestine). The technique demonstrates the submicrometer localization of free radical information in living animals and direct measurement of their level, which may reveal the relation between oxidative stress and Huntington's disease.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412300"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412300","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range. Here, a quantum sensing technique (T1 relaxometry) is used that involves fluorescent nanodiamonds (FND). Nitrogen vacancy (NV) centers within these nanodiamonds change their optical properties in response to magnetic noise, which allows detecting the unpaired electron from free radicals. This method is used to monitor the production of free radicals inside Caenorhabditis elegans models of Huntington's disease in vivo and in real-time. To investigate if radical generation occurs near polyglutamine expansions, a strain expressing Q40 yellow fluorescent protein (Q40::YFP, polyglutamine expansion overexpressed in the muscle) is used. By applying T1 relaxometry on FNDs in the body wall muscle, it is found that the production of free radicals significantly increase when PolyQ is expressed there (compared to the FNDs in intestine). The technique demonstrates the submicrometer localization of free radical information in living animals and direct measurement of their level, which may reveal the relation between oxidative stress and Huntington's disease.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.