{"title":"Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.","authors":"Song Qi, Zixuan Liu, Keitaro Suyama, Yuichi Tsuchiya, Jedidiah Canarejo, Khanh Quoc Phan, Noriko Yutsudo, Atsushi Shimada, Takeshi Hirota, Ichiro Ieiri, Akihiro Kishimura, Takahiro Muraoka, Takeru Nose, Takeshi Mori, Yoshiki Katayama","doi":"10.1021/acsmedchemlett.4c00503","DOIUrl":null,"url":null,"abstract":"<p><p>We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention. After 1 min of mixing with HSA, the ligand showed higher binding (1.7 times) than that of a control ligand (containing only activated disulfide). After intravenous injection to mice, the ligand half-lives were 1.6 and 9.2 times longer than those of control ligands with the active disulfide alone and with the alkyl chain alone, respectively. The proposed ligand has the potential to act as a platform for extending the half-life of small therapeutics in vivo.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"144-148"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00503","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention. After 1 min of mixing with HSA, the ligand showed higher binding (1.7 times) than that of a control ligand (containing only activated disulfide). After intravenous injection to mice, the ligand half-lives were 1.6 and 9.2 times longer than those of control ligands with the active disulfide alone and with the alkyl chain alone, respectively. The proposed ligand has the potential to act as a platform for extending the half-life of small therapeutics in vivo.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.