{"title":"Electrospun Chitosan/Polylactic Acid Nanofibers with Silver Nanoparticles: Structure, Antibacterial, and Cytotoxic Properties.","authors":"Yevhen Samokhin, Yuliia Varava, Kateryna Diedkova, Ilya Yanko, Valeriia Korniienko, Yevheniia Husak, Igor Iatsunskyi, Vladlens Grebnevs, Maris Bertiņs, Rafal Banasiuk, Viktoriia Korniienko, Agne Ramanaviciute, Maksym Pogorielov, Arunas Ramanavicius","doi":"10.1021/acsabm.4c01252","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs. Silver nanoparticles incorporated at concentrations of 25-50 μg/mL or above significantly enhanced the antibacterial effectiveness, especially against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. Biocompatibility assessments using umbilical cord mesenchymal stem cells demonstrated the nontoxic nature of the membranes with an AgNP concentration of 12.5 μg/mL, underscoring their potential for biomedical applications. This study provides valuable insights into developing electrospun chitosan membranes as effective antimicrobial coatings for various biomedical uses, including wound healing patches and tissue engineering constructs for soft tissue replacement.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs. Silver nanoparticles incorporated at concentrations of 25-50 μg/mL or above significantly enhanced the antibacterial effectiveness, especially against Staphylococcus aureus and Escherichia coli. Biocompatibility assessments using umbilical cord mesenchymal stem cells demonstrated the nontoxic nature of the membranes with an AgNP concentration of 12.5 μg/mL, underscoring their potential for biomedical applications. This study provides valuable insights into developing electrospun chitosan membranes as effective antimicrobial coatings for various biomedical uses, including wound healing patches and tissue engineering constructs for soft tissue replacement.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.