Targeted Enrichment of Nucleic Acid Bionic Arms Enhances the Hydrolysis Activity of Nanozymes for Degradation and Real-Time Monitoring of Organophosphorus Pesticides in Water

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jialong Zhou, Dinghui Xiong, Hu Zhang, Jiaxuan Xiao, Rui Huang, Ze Qiao, Zhugen Yang, Zhen Zhang
{"title":"Targeted Enrichment of Nucleic Acid Bionic Arms Enhances the Hydrolysis Activity of Nanozymes for Degradation and Real-Time Monitoring of Organophosphorus Pesticides in Water","authors":"Jialong Zhou, Dinghui Xiong, Hu Zhang, Jiaxuan Xiao, Rui Huang, Ze Qiao, Zhugen Yang, Zhen Zhang","doi":"10.1021/acs.est.4c13849","DOIUrl":null,"url":null,"abstract":"Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal–organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g., poor degradation efficiency, rate, and selectivity) limit their further application. Herein, a nucleic acid bionic arm-modified biomimetic nanozyme (MOF-808-Apt) was designed through a Zr-MOF and a specific aptamer against OPs, which was employed for the efficient and selective degradation of OPs. At the system, the functionalized biomimetic nanozyme can continuously capture trace OPs onto its catalytic sites for degradation with the fabricated nucleic acid bionic arms, significantly improving their catalytic activities compared to bare MOF-808 using paraoxon as a model of OPs, providing better performances including (i) an excellent degradation efficiency, boosting from 4 to over 60% within 6 min; (ii) a satisfactory catalytic rate (the pseudo-first-order rate constants of paraoxon hydrolysis improved from 0.09 to 0.14 min<sup>–1</sup>); and (iii) good selective degradation because of aptamers used. Besides, this dynamic degradation process could be visually recorded in real time with high sensitivity (limit of detection, 0.18 μM) because of the obvious color change of the reaction solution and signal amplification ascribed to increasing local concentrations of targets by the nucleic acid bionic arms. Summarily, this work provides a new strategy for the effective and selective degradation of typical OPs and concurrent monitoring of their dynamic degradation process.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"92 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13849","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal–organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g., poor degradation efficiency, rate, and selectivity) limit their further application. Herein, a nucleic acid bionic arm-modified biomimetic nanozyme (MOF-808-Apt) was designed through a Zr-MOF and a specific aptamer against OPs, which was employed for the efficient and selective degradation of OPs. At the system, the functionalized biomimetic nanozyme can continuously capture trace OPs onto its catalytic sites for degradation with the fabricated nucleic acid bionic arms, significantly improving their catalytic activities compared to bare MOF-808 using paraoxon as a model of OPs, providing better performances including (i) an excellent degradation efficiency, boosting from 4 to over 60% within 6 min; (ii) a satisfactory catalytic rate (the pseudo-first-order rate constants of paraoxon hydrolysis improved from 0.09 to 0.14 min–1); and (iii) good selective degradation because of aptamers used. Besides, this dynamic degradation process could be visually recorded in real time with high sensitivity (limit of detection, 0.18 μM) because of the obvious color change of the reaction solution and signal amplification ascribed to increasing local concentrations of targets by the nucleic acid bionic arms. Summarily, this work provides a new strategy for the effective and selective degradation of typical OPs and concurrent monitoring of their dynamic degradation process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信