Yanghui Xu, Xintu Wang, Jan Peter van der Hoek, Gang Liu, Kim Maren Lompe
{"title":"Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions","authors":"Yanghui Xu, Xintu Wang, Jan Peter van der Hoek, Gang Liu, Kim Maren Lompe","doi":"10.1021/acs.est.4c11540","DOIUrl":null,"url":null,"abstract":"Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions. The results showed that photochemical weathering influenced the conformation of the eco-corona, which, in turn, determined NP stability in the presence of NOM. Hydrophobic components of NOM predominantly bound to pristine NPs through hydrophobic and π–π interactions, and extended hydrophilic segments in water hindered NP aggregation via steric repulsion. Conversely, hydrogen bonding facilitated the binding of these hydrophilic segments to multiple photoaged NPs, thereby destabilizing them through polymer bridging. Additionally, the stabilization and destabilization capacities of NOM increased with its concentration and molecular weight. These findings shed light on the destabilizing role of NOM in weathered NPs, offering new perspectives on environmental colloidal chemistry and the fate of NPs in complex aquatic environments.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"22 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11540","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions. The results showed that photochemical weathering influenced the conformation of the eco-corona, which, in turn, determined NP stability in the presence of NOM. Hydrophobic components of NOM predominantly bound to pristine NPs through hydrophobic and π–π interactions, and extended hydrophilic segments in water hindered NP aggregation via steric repulsion. Conversely, hydrogen bonding facilitated the binding of these hydrophilic segments to multiple photoaged NPs, thereby destabilizing them through polymer bridging. Additionally, the stabilization and destabilization capacities of NOM increased with its concentration and molecular weight. These findings shed light on the destabilizing role of NOM in weathered NPs, offering new perspectives on environmental colloidal chemistry and the fate of NPs in complex aquatic environments.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.