Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS)

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhi Weng, Jiangxue Li, Yi Wu, Xuehao Xiu, Fei Wang, Xiaolei Zuo, Ping Song, Chunhai Fan
{"title":"Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS)","authors":"Zhi Weng, Jiangxue Li, Yi Wu, Xuehao Xiu, Fei Wang, Xiaolei Zuo, Ping Song, Chunhai Fan","doi":"10.1038/s41467-025-55986-9","DOIUrl":null,"url":null,"abstract":"<p>Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS). Using a fixed-energy primer design, we demonstrate the unbiasedness of MPHAC for amplifying 100,000-plex sequences. Simulations reveal that MPHAC achieves a fold-80 value of 1.0 compared to 3.2 with conventional fixed-length primers, lowering costs by up to four orders of magnitude through reduced over-sequencing. The MPHAC-DIS system using 35,406 encoded oligonucleotide allows simultaneous access of multimedia files including text, images, and videos with high decoding accuracy at very low sequencing depths. Specifically, even a ~ 1 × sequencing depth, with the combination of machine learning, results in an acceptable decoding accuracy of ~80%. The programmable and predictable MPHAC-DIS method thus opens new door for DNA-based large-scale data storage with potential industrial applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55986-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS). Using a fixed-energy primer design, we demonstrate the unbiasedness of MPHAC for amplifying 100,000-plex sequences. Simulations reveal that MPHAC achieves a fold-80 value of 1.0 compared to 3.2 with conventional fixed-length primers, lowering costs by up to four orders of magnitude through reduced over-sequencing. The MPHAC-DIS system using 35,406 encoded oligonucleotide allows simultaneous access of multimedia files including text, images, and videos with high decoding accuracy at very low sequencing depths. Specifically, even a ~ 1 × sequencing depth, with the combination of machine learning, results in an acceptable decoding accuracy of ~80%. The programmable and predictable MPHAC-DIS method thus opens new door for DNA-based large-scale data storage with potential industrial applications.

Abstract Image

用于DNA信息存储的芯片级DNA大规模平行均质扩增(MPHAC-DIS)
芯片级DNA合成为大规模DNA信息存储提供了一种高通量、低成本的方法。然而,从低拷贝数序列中获取公正的信息仍然是一个障碍,主要是由于不可缺少的DNA扩增。在这里,我们设计了一种模拟引导的定量引物模板杂交策略,以实现芯片级DNA的大规模并行均匀扩增,用于DNA信息存储(MPHAC-DIS)。使用固定能量引物设计,我们证明了MPHAC扩增100,000 plex序列的无偏性。模拟表明,与传统的固定长度引物相比,MPHAC达到了1.0的80倍值,而传统的引物为3.2,通过减少过测序,MPHAC的成本降低了4个数量级。使用35,406编码寡核苷酸的MPHAC-DIS系统允许在非常低的测序深度下同时访问多媒体文件,包括文本,图像和视频,具有高解码精度。具体来说,即使是~ 1倍的测序深度,结合机器学习,也可以获得~80%的可接受解码精度。因此,可编程和可预测的MPHAC-DIS方法为具有潜在工业应用的基于dna的大规模数据存储打开了新的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信