Graphene Quantum Dot-Modified Mn0.2Cd0.8S for Efficient Overall Photosynthesis of H2O2

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wang Wang, Zhongyue Chen, Chengming Li, Bei Cheng, Kai Yang, Song Zhang, Guoqiang Luo, Jiaguo Yu, Shaowen Cao
{"title":"Graphene Quantum Dot-Modified Mn0.2Cd0.8S for Efficient Overall Photosynthesis of H2O2","authors":"Wang Wang,&nbsp;Zhongyue Chen,&nbsp;Chengming Li,&nbsp;Bei Cheng,&nbsp;Kai Yang,&nbsp;Song Zhang,&nbsp;Guoqiang Luo,&nbsp;Jiaguo Yu,&nbsp;Shaowen Cao","doi":"10.1002/adfm.202422307","DOIUrl":null,"url":null,"abstract":"<p>The photosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) via the selective two-electron oxygen reduction reaction (ORR) is emerging as a promising method for producing this important chemical. However, the reliance on sacrificial agents has limited the practical application of many photocatalysts. Herein, nitrogen-doped graphene quantum dots (NGQDs) are loaded onto the surface of Mn<i><sub>x</sub></i>Cd<sub>1-</sub><i><sub>x</sub></i>S solid solution nanowires to enable overall H<sub>2</sub>O<sub>2</sub> photosynthesis in pure water under an air atmosphere. The optimized Mn<sub>0.2</sub>Cd<sub>0.8</sub>S/NGQDs (M<sub>0.2</sub>NG5) composite achieves a high yield of 6885 µmol g<sup>−1</sup> h<sup>−1</sup>, which is 10.4 times and 4.5 times higher than that of CdS (661 µmol g<sup>−1</sup> h<sup>−1</sup>) and Mn<sub>0.2</sub>Cd<sub>0.8</sub>S (1522 µmol g<sup>−1</sup> h<sup>−1</sup>), respectively. The NGQDs act as co-catalysts, enhancing the conductivity of the system. The strong electronegativity and polarity of the incorporated nitrogen and functional groups on the NGQDs edges enhance the ability of carbon atoms to activate O<sub>2</sub> into ·O<sub>2</sub><sup>−</sup>. The mechanism of H<sub>2</sub>O<sub>2</sub> photosynthesis is investigated using in situ Fourier transform infrared spectroscopy, intermediate trapping experiments, and theoretical calculations. This work offers new insights into the design of non-noble metal co-catalyst-modified photocatalysts for sacrificial-agent-free H<sub>2</sub>O<sub>2</sub> production.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422307","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photosynthesis of hydrogen peroxide (H2O2) via the selective two-electron oxygen reduction reaction (ORR) is emerging as a promising method for producing this important chemical. However, the reliance on sacrificial agents has limited the practical application of many photocatalysts. Herein, nitrogen-doped graphene quantum dots (NGQDs) are loaded onto the surface of MnxCd1-xS solid solution nanowires to enable overall H2O2 photosynthesis in pure water under an air atmosphere. The optimized Mn0.2Cd0.8S/NGQDs (M0.2NG5) composite achieves a high yield of 6885 µmol g−1 h−1, which is 10.4 times and 4.5 times higher than that of CdS (661 µmol g−1 h−1) and Mn0.2Cd0.8S (1522 µmol g−1 h−1), respectively. The NGQDs act as co-catalysts, enhancing the conductivity of the system. The strong electronegativity and polarity of the incorporated nitrogen and functional groups on the NGQDs edges enhance the ability of carbon atoms to activate O2 into ·O2. The mechanism of H2O2 photosynthesis is investigated using in situ Fourier transform infrared spectroscopy, intermediate trapping experiments, and theoretical calculations. This work offers new insights into the design of non-noble metal co-catalyst-modified photocatalysts for sacrificial-agent-free H2O2 production.

Abstract Image

Abstract Image

石墨烯量子点修饰Mn0.2Cd0.8S对H2O2的高效全面光合作用
过氧化氢(H2O2)通过选择性双电子氧还原反应(ORR)进行光合作用是生产这种重要化学物质的一种有前途的方法。然而,对牺牲剂的依赖限制了许多光催化剂的实际应用。本文将氮掺杂的石墨烯量子点(NGQDs)加载到MnxCd1-xS固溶体纳米线的表面,以实现空气环境下纯水中H2O2的整体光合作用。优化后的Mn0.2Cd0.8S/NGQDs (M0.2NG5)复合材料的产率为6885µmol g−1 h−1,分别是CdS(661µmol g−1 h−1)和Mn0.2Cd0.8S(1522µmol g−1 h−1)的10.4倍和4.5倍。NGQDs作为共催化剂,增强了体系的导电性。NGQDs边缘的氮和官能团的强电负性和极性增强了碳原子将O2活化成·O2−的能力。利用原位傅里叶变换红外光谱、中间捕获实验和理论计算研究了H2O2光合作用的机理。这项工作为设计用于无牺牲剂H2O2生产的非贵金属共催化剂-改性光催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信