Climate change aggravated wildfire behaviour in the Iberian Peninsula in recent years

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Martín Senande-Rivera, Damián Insua-Costa, Gonzalo Miguez-Macho
{"title":"Climate change aggravated wildfire behaviour in the Iberian Peninsula in recent years","authors":"Martín Senande-Rivera, Damián Insua-Costa, Gonzalo Miguez-Macho","doi":"10.1038/s41612-025-00906-3","DOIUrl":null,"url":null,"abstract":"<p>Climate change is considered to affect wildfire spread both by increasing fuel dryness and by altering vegetation mass and structure. However, the direct effect of global warming on wildfires is hard to quantify due to the multiple non-climatic factors involved in their ignition and spread. By combining wildfire observations with the latest generation of climate models, here we show that more than half of the large wildfires (area&gt;500 ha) occurring in the Iberian Peninsula between 2001 and 2021 present a significant increase in the rate of spread with respect to what it would have been in the pre-industrial period, attributable to global warming. The average acceleration of the rate of spread due to increased fuel dryness is between 2.0% and 8.3%, whereas the influence of enhanced vegetation growth since the pre-industrial period could potentially be even higher than the direct impact of temperature increase in fuel conditions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"45 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00906-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is considered to affect wildfire spread both by increasing fuel dryness and by altering vegetation mass and structure. However, the direct effect of global warming on wildfires is hard to quantify due to the multiple non-climatic factors involved in their ignition and spread. By combining wildfire observations with the latest generation of climate models, here we show that more than half of the large wildfires (area>500 ha) occurring in the Iberian Peninsula between 2001 and 2021 present a significant increase in the rate of spread with respect to what it would have been in the pre-industrial period, attributable to global warming. The average acceleration of the rate of spread due to increased fuel dryness is between 2.0% and 8.3%, whereas the influence of enhanced vegetation growth since the pre-industrial period could potentially be even higher than the direct impact of temperature increase in fuel conditions.

Abstract Image

近年来,气候变化加剧了伊比利亚半岛的野火行为
气候变化被认为会通过增加燃料的干燥度以及改变植被的数量和结构来影响野火的蔓延。然而,由于野火的点燃和蔓延涉及多种非气候因素,因此很难量化全球变暖对野火的直接影响。通过将野火观测数据与最新一代气候模型相结合,我们在此表明,2001 年至 2021 年间伊比利亚半岛发生的大型野火(面积达 500 公顷)中,有一半以上的蔓延速度与工业化前相比有显著增加,这可归因于全球变暖。由于燃料干燥度增加,传播速度平均加快了 2.0% 到 8.3%,而自工业化前时期以来植被生长增强的影响可能比温度升高对燃料条件的直接影响还要大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信