Programmable DNA Nanoswitch-Regulated Plasmonic CRISPR/Cas12a-Gold Nanostars Reporter Platform for Nucleic Acid and Non-Nucleic Acid Biomarker Analysis Assisted by a Spatial Confinement Effect
Congkai Wang, Xiaohan Xu, Wang Yao, Lei Wang, Xiaozhe Pang, Shenghao Xu, Xiliang Luo
{"title":"Programmable DNA Nanoswitch-Regulated Plasmonic CRISPR/Cas12a-Gold Nanostars Reporter Platform for Nucleic Acid and Non-Nucleic Acid Biomarker Analysis Assisted by a Spatial Confinement Effect","authors":"Congkai Wang, Xiaohan Xu, Wang Yao, Lei Wang, Xiaozhe Pang, Shenghao Xu, Xiliang Luo","doi":"10.1021/acs.nanolett.4c05829","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas 12a system based nucleic acid and non-nucleic acid targets detection faces two challenges including (1) multiple crRNAs are needed for multiple biomarkers detection and (2) insufficient sensitivity resulted from photobleaching of fluorescent dyes and the low kinetic cleavage rate for a traditional single-strand (ssDNA) reporter. To address these limitations, we developed a programmable DNA nanoswitch (NS)-regulated plasmonic CRISPR/Cas12a-gold nanostars (Au NSTs) reporter platform for detection of nucleic acid and non-nucleic acid biomarkers with the assistance of the spatial confinement effect. Through simply programming the target recognition sequence in NS, only one crRNA is required to detect both nucleic acid and non-nucleic acid biomarkers. The detection limit decreased by ∼196-fold for miRNA-375 and 122-fold for prostate-specific antigen (PSA), respectively. Moreover, versatile evaluation of miRNA-375 and PSA in clinical urine samples can also be achieved, according to which prostate cancer and healthy groups can be well identified.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"48 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05829","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas 12a system based nucleic acid and non-nucleic acid targets detection faces two challenges including (1) multiple crRNAs are needed for multiple biomarkers detection and (2) insufficient sensitivity resulted from photobleaching of fluorescent dyes and the low kinetic cleavage rate for a traditional single-strand (ssDNA) reporter. To address these limitations, we developed a programmable DNA nanoswitch (NS)-regulated plasmonic CRISPR/Cas12a-gold nanostars (Au NSTs) reporter platform for detection of nucleic acid and non-nucleic acid biomarkers with the assistance of the spatial confinement effect. Through simply programming the target recognition sequence in NS, only one crRNA is required to detect both nucleic acid and non-nucleic acid biomarkers. The detection limit decreased by ∼196-fold for miRNA-375 and 122-fold for prostate-specific antigen (PSA), respectively. Moreover, versatile evaluation of miRNA-375 and PSA in clinical urine samples can also be achieved, according to which prostate cancer and healthy groups can be well identified.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.