{"title":"In-Plane Bulk Photovoltaic Effect in a MoSe2/NbOI2 Heterojunction for Efficient Polarization-Sensitive Self-Powered Photodetection","authors":"Xiong Huang, Qi Wang, Kejian Song, Qichuan Hu, Huaihao Zhang, Xingsen Gao, Mingzhu Long, Jinyou Xu, Zuxin Chen, Guofu Zhou, Bo Wu","doi":"10.1021/acs.nanolett.4c05418","DOIUrl":null,"url":null,"abstract":"Two-dimensional ferroelectric materials can generate a bulk photovoltaic effect, making them highly promising for self-powered photodetectors. However, their practical application is limited by a weak photoresponse due to a weak transition strength and wide band gap. In this study, we construct a van der Waals heterojunction using NbOI<sub>2</sub>, which has significant in-plane polarization, with a highly absorbing MoSe<sub>2</sub> layer. We observe ultrafast hole transfer from MoSe<sub>2</sub> to NbOI<sub>2</sub> within 0.4 ps and electron transfer in the opposite direction within 3.8 ps, facilitating efficient charge dissociation and extraction. Applying a direct current electric field poling modulates the ferroelectric domains in NbOI<sub>2</sub>, enhancing the bulk photovoltaic effect. This results in one of the highest responsivities for self-powered photodetectors (101.3 mA/W) at 0 V bias alongside excellent polarization sensitivity (∼7.58). This work advances the understanding of self-powering mechanisms via the bulk photovoltaic effect and proposes new strategies for future self-powered devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"4 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05418","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional ferroelectric materials can generate a bulk photovoltaic effect, making them highly promising for self-powered photodetectors. However, their practical application is limited by a weak photoresponse due to a weak transition strength and wide band gap. In this study, we construct a van der Waals heterojunction using NbOI2, which has significant in-plane polarization, with a highly absorbing MoSe2 layer. We observe ultrafast hole transfer from MoSe2 to NbOI2 within 0.4 ps and electron transfer in the opposite direction within 3.8 ps, facilitating efficient charge dissociation and extraction. Applying a direct current electric field poling modulates the ferroelectric domains in NbOI2, enhancing the bulk photovoltaic effect. This results in one of the highest responsivities for self-powered photodetectors (101.3 mA/W) at 0 V bias alongside excellent polarization sensitivity (∼7.58). This work advances the understanding of self-powering mechanisms via the bulk photovoltaic effect and proposes new strategies for future self-powered devices.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.