Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu
{"title":"Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing","authors":"Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu","doi":"10.1002/anie.202422517","DOIUrl":null,"url":null,"abstract":"The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422517","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.