Yanan Zhao, Yufei Yao, Ping Li, Zhilu Ye, Minye Yang, Zicong Zhou, Guannan Yang, Lin Han, Zidong Wang, Yan Zhou, Jingrui Li, Haixia Liu, Guohua Dong, Bin Peng, Qian Li, Zhixin Guo, Ming Liu
{"title":"Observation of Large Low-Field Magnetoresistance in Layered (NdNiO3)n:NdO Films at High Temperatures","authors":"Yanan Zhao, Yufei Yao, Ping Li, Zhilu Ye, Minye Yang, Zicong Zhou, Guannan Yang, Lin Han, Zidong Wang, Yan Zhou, Jingrui Li, Haixia Liu, Guohua Dong, Bin Peng, Qian Li, Zhixin Guo, Ming Liu","doi":"10.1002/adma.202415426","DOIUrl":null,"url":null,"abstract":"Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden–Popper structures (ABO<sub>3</sub>)<i><sub>n</sub></i>:AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×10<sup>3</sup>% is obtained in the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO films with a high and wide temperature range (190–240 K). This finding underlines that the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO (<i>n</i> = 1) structure show a complex magnetic structure above T<sub>MI</sub> of perovskite NdNiO<sub>3</sub>, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (<0.1 T) near T<sub>MI</sub> effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"3 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden–Popper structures (ABO3)n:AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×103% is obtained in the layered (NdNiO3)n:NdO films with a high and wide temperature range (190–240 K). This finding underlines that the layered (NdNiO3)n:NdO (n = 1) structure show a complex magnetic structure above TMI of perovskite NdNiO3, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (<0.1 T) near TMI effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.