Scalable Synthesis of 2D ErOCl with Sub-meV Narrow Emissions at Telecom Band

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Panqi Huang, Youxuan Wu, Meng Gao, Junxin Chen, Bowen Ma, Jiuxiang Dai, Jing Zhang, Ziye Zhu, Wen Xiao, Zhitong Jin, Wu Zhou, Wenbin Li, Ya-Qing Bie, Lin Zhou
{"title":"Scalable Synthesis of 2D ErOCl with Sub-meV Narrow Emissions at Telecom Band","authors":"Panqi Huang, Youxuan Wu, Meng Gao, Junxin Chen, Bowen Ma, Jiuxiang Dai, Jing Zhang, Ziye Zhu, Wen Xiao, Zhitong Jin, Wu Zhou, Wenbin Li, Ya-Qing Bie, Lin Zhou","doi":"10.1002/adma.202404698","DOIUrl":null,"url":null,"abstract":"Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band. Diverse 2D rare earth materials are also grown via chemical vapor deposition (TmOCl, YbOCl, HoOCl, DyOCl, SmOCl, NdOCl, TbOCl, GdOCl, EuOCl, and PrOCl), demonstrating the strategy's generalizability. The as-grown ErOCl exhibits high crystalline quality and excellent ambient and thermal stability (300 °C). Photoluminescence analysis reveals a series of narrow emissions across the visible to near-infrared spectrum. The ErOCl's emission at the telecom band is narrowest among 2D luminescent materials, and suitable for integrating with photonic chips. Temperature-dependent photoluminescence spectra facilitate the understanding of emission mechanisms, analyzed using a crystal field perturbation model. Moreover, these emissions can be tuned by external magnetic fields. This research not only pioneers a novel strategy for synthesizing 2D rare earth materials but also paves the way for innovative building blocks in the realm of on-chip optical communications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"53 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202404698","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band. Diverse 2D rare earth materials are also grown via chemical vapor deposition (TmOCl, YbOCl, HoOCl, DyOCl, SmOCl, NdOCl, TbOCl, GdOCl, EuOCl, and PrOCl), demonstrating the strategy's generalizability. The as-grown ErOCl exhibits high crystalline quality and excellent ambient and thermal stability (300 °C). Photoluminescence analysis reveals a series of narrow emissions across the visible to near-infrared spectrum. The ErOCl's emission at the telecom band is narrowest among 2D luminescent materials, and suitable for integrating with photonic chips. Temperature-dependent photoluminescence spectra facilitate the understanding of emission mechanisms, analyzed using a crystal field perturbation model. Moreover, these emissions can be tuned by external magnetic fields. This research not only pioneers a novel strategy for synthesizing 2D rare earth materials but also paves the way for innovative building blocks in the realm of on-chip optical communications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信