Visualizing stepwise evolution of carbon hybridization from sp3 to sp2 and to sp

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wei Xiong, Guang Zhang, De-Liang Bao, Jianchen Lu, Lei Gao, Yusen Li, Hui Zhang, Zilin Ruan, Zhenliang Hao, Hong-Jun Gao, Long Chen, Jinming Cai
{"title":"Visualizing stepwise evolution of carbon hybridization from sp3 to sp2 and to sp","authors":"Wei Xiong, Guang Zhang, De-Liang Bao, Jianchen Lu, Lei Gao, Yusen Li, Hui Zhang, Zilin Ruan, Zhenliang Hao, Hong-Jun Gao, Long Chen, Jinming Cai","doi":"10.1038/s41467-024-55719-4","DOIUrl":null,"url":null,"abstract":"<p>Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from <i>sp</i>³ to <i>sp</i>² and to <i>sp</i> states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures. Density-functional-theory calculations unveil the pivotal role of the electron-withdrawing cyano group in activating neighboring methylene to form C(<i>sp</i><sup><i>3</i></sup>)–C(<i>sp</i><sup><i>3</i></sup>) bonds, and in facilitating subsequent stepwise HCN eliminations to realize the transformation across three carbon-carbon bond types. We also demonstrate the applicability of this strategy on one-dimensional molecular wires and two-dimensional covalent organic framework on different substrates. Our work expands the scope of carbon hybridization evolution and serves as an advance in flexibly engineering carbon-material by employing cyanomethyl-substituted molecules.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"64 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55719-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures. Density-functional-theory calculations unveil the pivotal role of the electron-withdrawing cyano group in activating neighboring methylene to form C(sp3)–C(sp3) bonds, and in facilitating subsequent stepwise HCN eliminations to realize the transformation across three carbon-carbon bond types. We also demonstrate the applicability of this strategy on one-dimensional molecular wires and two-dimensional covalent organic framework on different substrates. Our work expands the scope of carbon hybridization evolution and serves as an advance in flexibly engineering carbon-material by employing cyanomethyl-substituted molecules.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信