Intrinsically white organic polarized emissive semiconductors

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Zhengsheng Qin, Yu Zhang, Tianyu Wang, Haikuo Gao, Can Gao, Xiaotao Zhang, Huanli Dong, Wenping Hu
{"title":"Intrinsically white organic polarized emissive semiconductors","authors":"Zhengsheng Qin, Yu Zhang, Tianyu Wang, Haikuo Gao, Can Gao, Xiaotao Zhang, Huanli Dong, Wenping Hu","doi":"10.1038/s41566-024-01609-6","DOIUrl":null,"url":null,"abstract":"<p>Polarized emissive media are crucial for various applications in display, lighting and optical communication. An attractive research direction is to develop intrinsically white organic polarized emissive semiconductors as ideal candidates for miniaturized polarized light-emitting devices; however, it has been a considerable challenge to achieve polarized white-light emission due to the lack of suitable materials and effective preparation methods. Here we overcome this bottleneck by realizing white organic polarized emissive semiconductor single crystals (WOPESSCs). We employ a bimolecular doping method based on using highly polarized, blue-emitting 2,6-diphenylanthracene as the host single crystal, and controlling energy and polarization transfer with green- and red-emitting guests. The fabricated WOPESSCs achieve a photoluminescence quantum yield of 38.3% and a mobility of 4.9 cm<sup>2</sup> V<sup>–</sup><sup>1</sup> s<sup>–</sup><sup>1</sup>. The emitted light exhibits a degree of polarization as high as 0.96 with Commission Internationale de l’Eclairage coordinates of (0.3258, 0.3396). We also demonstrate the tunable emission properties of WOPESSCs from blue–white to yellow–white light by adjusting polarization angles, and three-primary-colour optical imaging with a wide colour gamut that covers 112% of the National Television System Committee standard. Furthermore, we fabricate highly polarized microscale WOPESSCs light-emitting diodes and light-emitting transistors, achieving high-quality white-light emission and wide-range colour tunability enabled by gate voltage-driven energy transfer processes. We believe these findings pave the way for manufacturing white and multicolour polarized emissive semiconductors and microscale light-emitting devices, promising diverse applications across various fields.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"74 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01609-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Polarized emissive media are crucial for various applications in display, lighting and optical communication. An attractive research direction is to develop intrinsically white organic polarized emissive semiconductors as ideal candidates for miniaturized polarized light-emitting devices; however, it has been a considerable challenge to achieve polarized white-light emission due to the lack of suitable materials and effective preparation methods. Here we overcome this bottleneck by realizing white organic polarized emissive semiconductor single crystals (WOPESSCs). We employ a bimolecular doping method based on using highly polarized, blue-emitting 2,6-diphenylanthracene as the host single crystal, and controlling energy and polarization transfer with green- and red-emitting guests. The fabricated WOPESSCs achieve a photoluminescence quantum yield of 38.3% and a mobility of 4.9 cm2 V1 s1. The emitted light exhibits a degree of polarization as high as 0.96 with Commission Internationale de l’Eclairage coordinates of (0.3258, 0.3396). We also demonstrate the tunable emission properties of WOPESSCs from blue–white to yellow–white light by adjusting polarization angles, and three-primary-colour optical imaging with a wide colour gamut that covers 112% of the National Television System Committee standard. Furthermore, we fabricate highly polarized microscale WOPESSCs light-emitting diodes and light-emitting transistors, achieving high-quality white-light emission and wide-range colour tunability enabled by gate voltage-driven energy transfer processes. We believe these findings pave the way for manufacturing white and multicolour polarized emissive semiconductors and microscale light-emitting devices, promising diverse applications across various fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信