Junyin Zhang, Zihan Li, Johann Riemensberger, Grigory Lihachev, Guanhao Huang, Tobias J. Kippenberg
{"title":"Fundamental charge noise in electro-optic photonic integrated circuits","authors":"Junyin Zhang, Zihan Li, Johann Riemensberger, Grigory Lihachev, Guanhao Huang, Tobias J. Kippenberg","doi":"10.1038/s41567-024-02739-y","DOIUrl":null,"url":null,"abstract":"<p>Understanding thermodynamical measurement noise is of central importance for electrical and optical precision measurements. These range from semiconductor sensors, in which the Brownian motion of charge carriers poses limits, to optical reference cavities for atomic clocks or gravitational wave detection, which are limited by thermo-refractive and thermo-elastic noise. Here we find that charge-carrier density fluctuations give rise to a noise process in electro-optic photonic integrated circuits. We show that the noise exhibited by lithium niobate and lithium tantalate photonic integrated microresonators feature a frequency scaling to the power of −1.2, deviating from thermo-refractive noise theory. This noise is consistent with thermodynamical charge noise, which leads to electrical field fluctuations that are transduced via the strong Pockels effects of electro-optic materials. Our results establish electrical Johnson–Nyquist noise as the fundamental limitation for electro-optic integrated photonics, crucial for determining performance limits for both classical and quantum devices.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"77 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02739-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding thermodynamical measurement noise is of central importance for electrical and optical precision measurements. These range from semiconductor sensors, in which the Brownian motion of charge carriers poses limits, to optical reference cavities for atomic clocks or gravitational wave detection, which are limited by thermo-refractive and thermo-elastic noise. Here we find that charge-carrier density fluctuations give rise to a noise process in electro-optic photonic integrated circuits. We show that the noise exhibited by lithium niobate and lithium tantalate photonic integrated microresonators feature a frequency scaling to the power of −1.2, deviating from thermo-refractive noise theory. This noise is consistent with thermodynamical charge noise, which leads to electrical field fluctuations that are transduced via the strong Pockels effects of electro-optic materials. Our results establish electrical Johnson–Nyquist noise as the fundamental limitation for electro-optic integrated photonics, crucial for determining performance limits for both classical and quantum devices.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.