PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chunhe Zhang, Jihuan Hou, Zhen Li, Quan Shen, Haiqing Bai, Li Chen, Jinying Shen, Ping Wang, Yinlei Su, Jing Li, Qisi Zhang, Chengyao Liu, Xuetong Xi, Fei Qi, Yuting Chen, Xin Xie, Adam Yongxin Ye, Xiaoheng Liu, Roberto Plebani, George Church, Longlong Si
{"title":"PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins","authors":"Chunhe Zhang, Jihuan Hou, Zhen Li, Quan Shen, Haiqing Bai, Li Chen, Jinying Shen, Ping Wang, Yinlei Su, Jing Li, Qisi Zhang, Chengyao Liu, Xuetong Xi, Fei Qi, Yuting Chen, Xin Xie, Adam Yongxin Ye, Xiaoheng Liu, Roberto Plebani, George Church, Longlong Si","doi":"10.1038/s41589-024-01813-z","DOIUrl":null,"url":null,"abstract":"<p>Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"1 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01813-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.

Abstract Image

PROTAR疫苗2.0通过降解多种病毒蛋白产生流感疫苗
利用细胞泛素-蛋白酶体系统(UPS)操纵病毒蛋白稳定性代表了开发减毒活疫苗的一种有前途的方法。第一代蛋白水解靶向(PROTAR)疫苗存在局限性,因为它仅在病毒蛋白的末端结合蛋白酶体靶向脱粒(PTDs),可能限制其广泛应用。在这里,我们开发了下一代PROTAR疫苗方法,称为PROTAR 2.0,它可以在流感病毒的各种基因组位点(包括内部区域和末端)灵活地结合PTDs。PROTAR 2.0流感病毒在ups缺陷细胞中保持高效复制以进行大规模生产,但在常规细胞中被ptd介导的病毒蛋白蛋白酶体降解所削弱。将多个PTDs合并到一个病毒中产生优化的PROTAR 2.0候选疫苗。在动物模型中,PROTAR 2.0候选疫苗是高度减毒的,单剂量鼻内免疫诱导了强大而广泛的免疫反应,对同源和异源病毒的攻击提供了完全的交叉反应保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
文献相关原料
公司名称
产品信息
索莱宝
ELISA stop solution
索莱宝
ELISA coating buffer
索莱宝
TBST
索莱宝
crystal violet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信