Anjali Sharma, Dipak Dattatray Shinde, Chandan Mahajan, Neha V. Dambhare, Arindam Biswas, Anurag Mitra, Vrushali S. Girade, Arup K. Rath
{"title":"Synergistic Improvement of Narrow Bandgap PbS Quantum Dot Solar Cells through Surface Ligand Engineering, Near-Infrared Spectral Matching, and Enhanced Electrode Transparency","authors":"Anjali Sharma, Dipak Dattatray Shinde, Chandan Mahajan, Neha V. Dambhare, Arindam Biswas, Anurag Mitra, Vrushali S. Girade, Arup K. Rath","doi":"10.1021/acsami.4c22334","DOIUrl":null,"url":null,"abstract":"The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation. The limited NIR transparency of commonly used indium-doped tin oxide (ITO) electrodes and inadequate NIR radiation from commercially available solar simulators further compromise the true performance of NBG PbS QDs in solar cells. Here, we employ a hybrid ligand strategy based on inorganic cadmium halide and organic thiol molecules, leading to the partial substitution of surface Pb atoms with Cd heteroatoms. This hybrid ligand strategy substantially reduces undesired QD fusion in solid films, improving the photophysical and electronic properties. By modulating the thickness of the ITO layer and managing refraction loss through a ZnO layer coating, we improved NIR transparency to above 80%. We combine an NIR light source with a solar simulator to achieve near-ideal spectral matching for a broader range with standard AM1.5G illumination. Enhancements in surface passivation of QDs, improvements in NIR transparency of electrodes, and a spectral matched light source setup help us achieve solar cell power conversion efficiencies of 12.4%, 4.48%, and 1.37% under AM 1.5G, perovskite filter, and silicon filter illuminations, respectively. A record open-circuit voltage (<i>V</i><sub>oc</sub>) of 0.54 V and short-circuit current density (<i>J</i><sub>sc</sub>) of 38.5 mA/cm<sup>2</sup> are achieved under AM 1.5G illumination. We attribute these advancements in photovoltaic parameters to the reduction in Urbach tail states and intermediate trap density originating from superior surface passivation of QDs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"92 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22334","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation. The limited NIR transparency of commonly used indium-doped tin oxide (ITO) electrodes and inadequate NIR radiation from commercially available solar simulators further compromise the true performance of NBG PbS QDs in solar cells. Here, we employ a hybrid ligand strategy based on inorganic cadmium halide and organic thiol molecules, leading to the partial substitution of surface Pb atoms with Cd heteroatoms. This hybrid ligand strategy substantially reduces undesired QD fusion in solid films, improving the photophysical and electronic properties. By modulating the thickness of the ITO layer and managing refraction loss through a ZnO layer coating, we improved NIR transparency to above 80%. We combine an NIR light source with a solar simulator to achieve near-ideal spectral matching for a broader range with standard AM1.5G illumination. Enhancements in surface passivation of QDs, improvements in NIR transparency of electrodes, and a spectral matched light source setup help us achieve solar cell power conversion efficiencies of 12.4%, 4.48%, and 1.37% under AM 1.5G, perovskite filter, and silicon filter illuminations, respectively. A record open-circuit voltage (Voc) of 0.54 V and short-circuit current density (Jsc) of 38.5 mA/cm2 are achieved under AM 1.5G illumination. We attribute these advancements in photovoltaic parameters to the reduction in Urbach tail states and intermediate trap density originating from superior surface passivation of QDs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.