Wen Pan, Lai Wang, Jianshi Tang, Heyi Huang, Zhibiao Hao, Changzheng Sun, Bing Xiong, Jian Wang, Yanjun Han, Hongtao Li, Lin Gan, Yi Luo
{"title":"Optoelectronic array of photodiodes integrated with RRAMs for energy-efficient in-sensor computing","authors":"Wen Pan, Lai Wang, Jianshi Tang, Heyi Huang, Zhibiao Hao, Changzheng Sun, Bing Xiong, Jian Wang, Yanjun Han, Hongtao Li, Lin Gan, Yi Luo","doi":"10.1038/s41377-025-01743-y","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of internet of things (IoT) urgently needs edge miniaturized computing devices with high efficiency and low-power consumption. In-sensor computing has emerged as a promising technology to enable in-situ data processing within the sensor array. Here, we report an optoelectronic array for in-sensor computing by integrating photodiodes (PDs) with resistive random-access memories (RRAMs). The PD-RRAM unit cell exhibits reconfigurable optoelectronic output and photo-responsivity by programming RRAMs into different resistance states. Furthermore, a 3 × 3 PD-RRAM array is fabricated to demonstrate optical image recognition, achieving a universal architecture with ultralow latency and low power consumption. This study highlights the great potential of the PD-RRAM optoelectronic array as an energy-efficient in-sensor computing primitive for future IoT applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"1 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01743-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of internet of things (IoT) urgently needs edge miniaturized computing devices with high efficiency and low-power consumption. In-sensor computing has emerged as a promising technology to enable in-situ data processing within the sensor array. Here, we report an optoelectronic array for in-sensor computing by integrating photodiodes (PDs) with resistive random-access memories (RRAMs). The PD-RRAM unit cell exhibits reconfigurable optoelectronic output and photo-responsivity by programming RRAMs into different resistance states. Furthermore, a 3 × 3 PD-RRAM array is fabricated to demonstrate optical image recognition, achieving a universal architecture with ultralow latency and low power consumption. This study highlights the great potential of the PD-RRAM optoelectronic array as an energy-efficient in-sensor computing primitive for future IoT applications.